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Abstract 

Water, the basic element for humanity and agriculture, is becoming an increasingly limited resource. Water shortage is a major 

abiotic problem that affects productivity in agriculture worldwide. The effects of drought stress on the normal physiology and 

growth of plants are diverse. It leads to increased solutes outside the root concentration relative to the inner roots, which leads 

to reverse osmosis. This removes the cell membrane from the cellular wall, which can lead to cell death. The interaction with 

water-absorbing roots creates water stress, resulting in a gap in the soil-plant-air continuum. Water is drawn from root cells, 

resulting to cell membrane shrinking and decreased membrane integrity as the plant continues to lose water through 

transpiration, which may eventually result in cell death. Drought stress affects photosynthesis in plants by stomach removal, 

chlorophyll destruction and photosynthesis. They disturb the balance of the production and antioxidant defense of reactive 

oxygen species (ROS) resulting in the increase of ROS that causes oxidative stress on proteins, membrane lipids and other cell 

components. Mineral elements serve for a range of plant functions, including preservation of the charged balance, transporting 

electron, building blocks, activation of enzymes and supplying osmotic turgor and development. The aim of the study is to offer 

a comprehensive review of numerous macronutrients and micronutrients, such as nitrogen, phosphorus, potassium, calcium 

and magnesium, zinc and examine ways in which those nutrients help to reduce the adverse effect of drought on farmers. 
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Introduction 

Plants are constantly exposed to various environmental conditions, some of which may be abiotic 

stressors such as lack of accessible water, salt, excessive light, extreme heat or cold, and an imbalanced 

nutritional profile. These conditions, which may act simultaneously or separately, can have a major 

impact on plant health(1). Plasticity, along with plant adaptation, relates to the potential of plants to 

react to abiotic stress(2). Drought (or water shortage) stress is a fundamental constraint on agricultural 
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output in many arid and semi-arid countries, and has been intensively studied(3). Inadequate 

precipitation, lowered ground water levels, or water retention by soil particles can lead to a water 

deficit in the plants(4,5). When plants experience water stress, they adapt by changing their 

morphological, physiological, and biochemical traits(2). 

In natural habitats, plants are sessile, which means they are fixed to the ground. They are thus exposed 

to a variety of unfavorable influences, such as things like climate change, drought, etc. as well as a 

variety of defense mechanisms and resistance mechanisms developed in response to these types of 

stressors(6). The duration, speed, and efficacy of stress recovery also govern plant performance when it 

is necessary to maintain severe water shortage periods, which are based on the genetic features of each 

plant species(7,8). Because plants must immediately adapt to a water shortage, nearly all biological 

processes are effected across the entire plant. To absorb water through their roots, plants need to use a 

number of different mechanisms, which benefit them. One such mechanism is maintaining cell turgor, 

which means not losing water(11). There have been several negative impacts of drought on plants, 

including decreased cell division and growth rate, increased root differentiation, larger leaves, increased 

length of shoots, and altered stomatal movements, water and mineral nutrition, and decreased yield 

and water usage efficacy(12). Caused by stomatal closure, membrane damage, and reduced activity of 

several enzymes, especially those that are involved in ATP generation, reduced photosynthesis occurs 

[12,13]. Reactive oxygen and nitrogen species (ROS and RNS) are both produced during conditions of 

drought stress, and therefore this results in a reduction in redox regulating capability of the cell(8,14). 

One of the most active fields of agricultural research is studying plants that can endure lengthy periods 

of drought stress and preserve their vitality and productivity(15). Tolerant plants may be aided by having 

more than one quality that enables them to better tolerate water shortages. Also, an advanced root 

system gives the plant the ability to dig deeper into the soil, which improves the ability to absorb 

water(16). 

Drought Stress on Plant responses. 

An further possibility is that particular plant individuals' reactions to drought might be physiological 

(e.g., fast stomata closure and enhanced water usage efficiency) or biochemical (e.g., production of 

osmolytes, aquaporins, and a strong antioxidant apparatus)(17). Many innovative techniques have been 

employed to fight the impact of drought on agricultural species, aside from the usual breeding 

techniques utilized for drought-tolerant genotypes. An example of regulated deficit irrigation might be 

helpful to plants, including the fact that it provides a large quantity of useful factors like sugars, organic 
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acids, and antioxidants(18,19). Not only may some compounds applied to plants through their leaves 

help plants in coping with low water availability, but this may be done because some drought-tolerant 

genotypes supposedly contribute to their drought tolerance(20,21). Salicylic acid [22], amino acids 

[22,23], polyamines [24], and micronutrients (such as potassium and phosphorus) [25] have an 

incredibly uniform impact across species, whereas brassinosteroids [20,21], salicylic acid [22], and amino 

acids [22,23] are far more likely to be effective. While  the understanding the mechanisms that support 

drought tolerance is beneficial, particularly for crops with water scarcity, it is particularly important in 

marginal zones (e.g., semi-arid settings) when the water supply is the principal restriction on plant 

development.the negative impact of Drought Stress on plant performance is seen in morpho-anatomy 

to biochemical alterations. A number of reactions in plants, such as morphology, physiology, 

biochemistry, and molecular alterations, follow periods of water shortage(26).   Figure 1 shows how 

drought events impair plant performance at various phases of growth. Because of a lack of water, plants 

that are just starting out may not germinate or grow well(27). 

 

Figure1: Drought stress effect on plant growth and development 
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Due to drought, plants' water relations throughout their whole growth cycle are disrupted, resulting in a 

major disturbance of all three of their metabolic pathways (physiological, biochemical, and 

molecular)(14,28). Decreases in photosynthetic activity lead to decreases in overall plant output(29,30). 

Plant responses to drought stress are driven in part by oxidative stress. Causes acute metabolic issues, 

reduces plant output, and affects membrane integrity(33,34,35). 

Plant growth due to drought stress. 

Plant growth and development is frequently inhibited by drought stress, which negatively affects several 

facets of plant growth and development. In order for plants to progress, germination, overall health, and 

the number of secondary leaves are all essential(36). Seeding is the primary factor involved in growth 

that is affected by drought. It has been observed that the germination of many plant species has 

undergone dramatic alterations, including some of the most frequently farmed crops, such as maize, 

sorghum, and wheat(37,38,39). Watching plants wither, fall, and cease development in their vegetative 

stage due to water constraint is a good indicator that they're experiencing water shortage throughout 

the early stages of growth [40]. For the same reason, drought reduces the amount of nutritional 

absorption in plants, resulting in a shorter stem [41]. as well, the shoot length of Lathyrussativus L. was 

reduced in times of water deficit.(42). 

Plants expand their root architecture in times of water shortage in order to access deeper layers of soil 

(43). While they are essential sensors of water availability, roots are not just sensors of that but are also 

involved in determining many of the characteristics of root growth, such as root length, spread, and the 

quantity and length of lateral roots(44). Furthermore, roots perform several biological functions, 

including the accumulation of nutrients and the absorption of water, and they interact with other 

microorganisms in the rhizosphere to form a symbiotic connection. Root length of the common crocus 

(Crocus sativus L.) rose in response to drought stress(45). As a result, a healthy root system contributes 

to plant growth by providing it with stability, particularly during the active phase of plant growth (46). A 

good root system helps provide stability and increases nutrient accumulation, resulting in increased 

plant biomass output (47). In periods of water shortage, plants have a greater proportion of roots to 

shoots, which results in reduced plant biomass(48). Most of the photosynthetic chemicals are produced 

in the leaf, which is the plant's principal photosynthetic organ. A stress treatment of 

Andrographispaniculate caused the number of leaves to drop by (49). Plant growth relies on 

photosynthesis, the fundamental process for creating leaves. Increased water stress decreases leaf area, 
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lowering photosynthesis and agricultural yield. To maintain a balance between water absorbed by roots 

and water status of various plant components, a reduction in leaf area occurred in Petroselinum crispum 

L. and Stevia rabaudiana plants under water stress (50,51). Because it results in lesser water loss by 

transpiration, a reduced leaf area is a drought avoidance technique. Cell turgidity loss results from a 

reduced rate of cell division, which decreases leaf area(52). Concurrent reduction in leaf water content 

and stomata closing leads in the guard cell turgor pressure decreasing, causing stomata to close. There is 

a noticeable increase in the rate of premature leaf senescence under drier circumstances ( 17). 

Photosynthesis under stress of drought 

When there is a water shortage, plants will slow or cease photosynthesis(54). Figure 2 Increased osmotic 

stress impacts the photosynthetic machinery because of lower leaf area, increased stomata closure, and 

because of this, reduced leaf cooling through evapotranspiration(55,56). To a great extent, this loss in 

photosynthetic activity is related to the decreased CO2 transport across stomatal and mesophyll 

limitations in drought-stressed plants(57). Lowered photosynthetic activity is an indicator of possible 

reduced stomatal mobility, as a result of dryness(58,59) .Rubisco activity, the functioning of nitrate 

reductase and sucrose phosphate synthase, as well as the capacity to generate ribulose bisphosphate, 

have all been proven to be impacted by the reduction in photosynthetic activity (60). (RuBP). It was 

discovered that with CO2 enrichment, early reactions of maize metabolites and transcripts to drought 

stress were completely inhibited(61).As a result of water scarcity, leaf area per shoot reduced, impacting 

gas exchange, water relations, vegetative growth, and fruit/grain development, for example, in grape 

and maize (i.e., kernel number and 100-kernel dry weight decreased as kernel number 

increased)(62,63). Another important photosynthesis-related parameter that is greatly influenced by 

water constraint is chlorophyll concentration, which is crucial for photosynthesis (65). Research has 

found that when chlorophyll photooxidation and degradation go unaddressed, photosynthesis would be 

hampered (66). For example, during periods of drought stress, which decrease the supply of water, leaf 

chlorophyll synthesis is reduced and the chlorophyll a/b ratio in soybean is altered(67). Photosynthetic 

activity, chlorophyll content, photosystem II photochemical efficiency, stomatal movement, and the 

state of the plant water cycle all dropped when crop output was reduced(68).Peroxidative lipid 

peroxidation, followed by chlorophyll degradation, results from drought-induced O2 and H2O2 

generation. Problems with photosynthesis, in particular chlorophyll content, have often been associated 

with reduced plant growth and output(70). Severe water restriction decreases the photosynthetic 

activities of photosynthetic components and chlorophyll pigments in Vigna mungo (71).Due to a long 

period of drought, a plant's photosynthesis will be diminished, along with its ability to allocate and 



Nat. Volatiles & Essent. Oils, 2021; 8(4): 5344-5369 

 

5349 

 

utilize carbon, resulting in decreased production(72). This reduction in photosynthetic product 

production was the primary way in which drought stress decreased metabolic aberrations in 

soybean(16). Since water stress led to a decrease in the amount of several Calvin cycle proteins, 

including a drop in the expression of Rubisco in olives, drought stress led to a decline in Rubisco 

expression in olives(73). To further the drought stress, even other photosynthesis-related enzymes, such 

the Rubisco enzyme, are disrupted. This results in a drop in the concentration of photosynthetic pigment 

molecules (74). 

Drought stress reduction with nutrient inputs 

Aiding plant development even in poor weather conditions is only one of the many ways optimum 

nutrient delivery aids crop development. Plant growth requires seventeen nutrients(75). There are 

macronutrients (requiring higher intake levels) and micronutrients (with lower needs). This review 

stresses the essential nutrients' role in countering drought-related stress. 

Macronutrients 

Nitric oxide 

In dry climatic conditions, water consumption efficiency and agricultural development are lowered 

because of limited water accessibility. With inefficient nitrogen treatment, effective nitrogen treatment 

may be helpful in drought circumstances (75, 76). Plants that are suffering from the effects of drought 

may also be more sensitive to heat shock. At the time of drought stress, lack of nitrogen causes crop 

biomass loss(77, 78). The prior research shown that root biomass is not considerably impacted by 

drought and low nitrogen levels, but shoot biomass is(79). In contrast, when enough nitrogen is present 

in the soil, plants become drought resistant (75, 80, 81). Adding nitrogen to the soil boosted crop output 

greatly during a drought. Plasma membrane damage is prevented and the osmotic equilibrium is 

maintained thanks to the important role of nitrogen. In arid conditions, applying nitrogen has the 

additional benefit of improving the uptake of important nutrients like potassium and calcium (82).When 

available, nitrogen helps lower malondialdehyde concentrations in the air, thus mitigating drought 

stress (83). It helps photosynthesis, which means it improves photosynthetic content and cell 

proliferation, leading in an increase in leaf area. In dry conditions, photosystem II efficiency suffers 

because of reduced nitrogen accessibility ( 84, 85, 86). 

Phosphorus Sulfate  



Nat. Volatiles & Essent. Oils, 2021; 8(4): 5344-5369 

 

5350 

 

Applying phosphorus to various crops during periods of water shortage has previously been proven to 

increase their water usage ability and help with drought tolerance (87, 88). Studies have shown that a 

good supply of phosphorus in crops leads to the growth of root and stomatal activity(89). Additionally, 

phosphorus is found in higher quantities, which boosts leaf area, membrane integrity, and water 

consumption efficiency(90). During periods of excellent water availability, phosphorus concentrations in 

leaves were significantly larger, implying that it has a function in drought resistance.(91). Phosphorus is 

also capable of increasing nitrogen mobility in a water-deficient environment(92). During a prolonged 

drought, phosphorus supplementation increased the height, leaf area, weight, and water use efficiency 

of plants (93). Phosphorus placement, DPP, also has an influence on crop development under drought, 

eventually boosting root growth (94) 

Potassium 

The well-known agricultural use of potassium is for osmoregulation. The optimum dose of potassium 

regulates stomatal conductance and water absorption, resulting in an improved WUE(95). The biological 

properties of potassium include: regulating water absorption, stomatal regulation, carbon intake, cell 

elongation, and oxidative stress detoxification through aquaporins and osmotic pressure(96). During 

drought, applications of K treatments boost photosynthesis in grasses like sorghum, which in turn helps 

produce a greater amount of biomass and yields (97). Knots are needed for photosynthate assimilation 

in maize, which is a good reference for biologists(98). The activity of aquaporins and stem cell 

development (growth) is inversely related to the level of potassium (availability). (99).A large role is 

played by the root hydraulic conductivity and morphological features when it comes to agricultural 

productivity. A direct relationship exists between drought tolerance and increased hydraulic 

conductivity (100). Elevated levels of K reduce yield and affect several properties in higher plants, as 

seen by the findings above. When a drought occurs, ethylene levels rise, inhibiting the activity of abscisic 

acid. Further delays of stomatal conductance occur due to lack of K. In addition to playing a role in the 

detoxification of reactive oxygen species (ROS), potassium is important for supporting photosynthesis 

and chlorophyll synthesis(101). 

Magnesium 

Magnesium plays a major function in the chlorophyll molecule since it is included within the chlorophyll 

molecule. This is important because it separates dry materials from the sink to the source. To avoid 

flower sterility, Mg must be acceptable throughout the reproductive stage. This use of vegetation also 

increases nutrient mobility and contributes to development preservation in stressful settings (102). 
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Magnesium is a mobile nutrient. Nitrogen and potassium are positively correlated with each other. 

Magnesium sufficiently increases their mobility; in addition, it enhances stress tolerance. 

(103).Magnesium uptake from the soil in field crops is influenced by drought stress. One approach of 

eliminating this deficiency is by applying foliar magnesium (104). Mg causes drought stress through 

contributing to root growth, absorption of NPK, and water usage efficiency (WUE)(105). 

Calcium  

Because of drought stress, ROS is produced in excess, which damages cells (106). Calcium serves a key 

role in the detoxification of ROS (107). The importance of pH and calcium in the function of aquaporins 

has been shown in several studies(108). Calcium supplementation given to wheat cultivars during 

periods of stress promotes drought resistance. The process that controls cell signaling in mammals, 

including humans, is analogous to the accumulation of proline in cells.Calcium boosts chlorophyll and 

catalase activity, and minimizes plasma membrane damage when administered during drought. 

Additionally, it maintains water-soluble antioxidants such as proline and other antioxidants, such as 

cysteine and glutathione.(109).  Ca supplied to foliage under drought stress assists in the decrease of 

drought stress by refining catalase, peroxidase, and superoxide dismutase activities [Ca and its 

byproducts aid in the refinement of catalase, peroxidase, and superoxide dismutase activities when 

given to foliage under drought stress] (110). 

sulfur 

Sulfur treatment was unknown until recently as to its role in alleviating drought stress. Significant stress 

signaling system involvement. It supports crop development, anatomical features, and the nutritional 

value of the food(111).  A critical function in stress resistance is played by increased glutathione levels. 

Treatment of reactive oxygen species aids in the detoxification of the individual. Crops must be able to 

tolerate drought conditions with adequate sulfur absorption. The two responses to drought stress 

include transport and absorption (112). 

Minerals and vitamins 

zinc 

Zinc plays an important role in a number of physiological processes, including catalysis, 

carboxypeptidase activity, superoxide dismutase activity, RNA polymerase activity, and the production 

of alkaline phosphates(113). Zinc has been shown to help crops withstand drought in regions where 

water is scarce by improving water use efficiency (WUE) and water activity(114).The fact that water 
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shortage reduces zinc absorption means that plants are under stress. In dry soils, zinc is immobile 

(115).Grain filling and anthesis (when cereals such as wheat are subjected to drought) both hinder 

nutrient absorption, which means that seed development is decreased(116). When zinc is present in an 

appropriate level, it helps the crop survive drought by supporting photosynthesis. Inactivation of ROS 

occurs due to its involvement in reducing reactive oxygen species (ROS) [4, 140]. Plants are particularly 

susceptible to Zn deficiency when they are at their most vulnerable in the breeding period (117)In 

prolonged periods of dryness, several cell metabolic components, such as NADPH, decline in function. 

Reduced oxidative stress, decreased ROS levels, and an increase in osmolytes (e.g., SOD) are some of the 

many effects of zinc therapy on the skin. (118). 

Manganese 

micronutrient required by plants for several purposes. It helps the metabolic enzymes in the 

tricarboxylic acid (TCA) cycle get started. Photosystem II employs it as a component and produces ATP 

and RuBP carboxylase activity, too. In areas of water shortage, there is a relationship between 

superoxide dismutase activity and chlorophyll content. (119). It is widely recognized that manganese has 

a well-established role in the removal of superoxide and hydrogen peroxide in the detoxification of ROS 

such as superoxide and hydrogen peroxide. A shortage of manganese is quite different from an excess. 

In the case of a deficit, oxidative stress is induced in plants, causing the breakdown of chlorophyll and 

the reduction of photosynthetic activity. A lack of water might lead to a manganese deficit as well. 

When the soil is dry, manganese is difficult for plants to acquire because of its limited availability (120). 

WUE decreases as a result of a deficit in manganese. In cereals such as barley, decreased WUE is linked 

to abrupt stomatal control during the day and insufficient stomatal closure at night. ROS activity causes 

the plasma membrane's waxy covering to be shed, leading to cell death (121). 

Ferrous 

Chlorophyll pigments are synthesized in association with it. This refers to the part of enzymes that is 

responsible for transferring energy, reducing nitrogen, and synthesizing lignin. It serves as a catalyst for 

other biochemical processes in plants, and has sulfur in common with this group of compounds. The 

decreased chlorophyll concentration causes chlorosis because to an iron deficiency. Iron deficiency 

makes the leaves turn yellow, a sign of imminent death. In soils with a high pH, iron uptake is 

significantly decreased. it has the ability to stimulate phosphorus and manganese, which means it is 

antagonistic.Iron absorption is limited by the moisture content of the soil (122). Iron is absolutely critical 

in helping leaves maintain their vitality and avoid oxidative damage(123). It has a considerable 
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detrimental influence on plant development if it is missing. Antioxidant activity in plants is possible only 

with the presence of iron(124). 

Conclusion 

Drought stress is a major limitation on worldwide agricultural production. For the development of 

drought tolerance in plants the management of plant nutrients is vital. A number of strategies can 

successfully alleviate the effects of drought by improving plant nutrition. Drought stimulates the 

synthesis in stressed plants of reactive oxygen (ROS) as a result of energy growth, which improves the 

photo-oxidation effect and destroys the membrane of chloroplastic. The use of macronutrients such as 

N, K, and Ca lowers the reactive oxygen (ROS) toxicity by increasing plant cell antioxidant contents such 

as superoxide dismutase (SOD); catalase (CAT) and peroxidase (POD). These antioxidants scavenge the 

photooxidation block, maintain the integrity of the membrane and enhance the rates of 

photocyanisation of agricultural plants. The antioxidants are a reactive oxygen (ROS). The use of a few 

micronutrients, such as Zn, Si and Mg, also improves antioxidant levels and promotes plant drought 

resistance. Nutrients like P, K, Mg and Zn are otherwise supportive to root developments, improving 

water absorption, supporting stomach management and promoting drought resistance. The addition of 

potassium and calcium helps maintain high tissue water potential under dry weather and increases 

drought tolerance via osmotic adjustments. Micronutrients like as copper and bore reduce indirectly, 

through physiological, biochemical, and metabolic processes the negative effects of drought in 

plants,alsoDrought is a generally adverse limitor which impacts a range of plant growth, physiology and 

metabolism. All key aspects to take into account while choosing drought-tolerant plants for different 

ecosystems include timing, length, intensity and growth rate. The effect of drought stress on a number 

of biological processes, from the embryonic stage to the breeding and maturity stage, is negative. 

Drought stress has an unfavorable influence on plant morphology, physiology, biochemistry, and 

metabolic processes and reduces productivity. When plants are driven by different stages of their 

development, the cells, organs and complete plants utilise a range of biological processes. By optimizing 

the stomach function, enhancing water transport, developing larder, deeper rooted structures and 

creating appropriate solutes, the loss of water was decreased. The creation and development of drought 

tolerance among plants contributes with the creation of a scavenging of ROS by an antioxidant defense 

system, the maintenance of membrane integrity, the use of specific plant genotypes, the use and 

implementation of regulators for plant growth, production of compatible solutes and the production of 

stress-related proteins. Individuals that have higher efficiency in water use, increased antioxidant power 

or the creation of osmolites and secondary metabolites may be possible for boosting drought resistance 
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in plants. These are possible strategies. In addition, an exogenous supply of compounds that can 

promote drought tolerance can be used in plants in water-scarce conditions. For the development of 

transgenic plants that are resilient to water shortages, biotechnological methods should also be 

investigated but cannot be validated before field tests are performed. 
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