

'The GC MS Analysis of Ethyl Acetate Extract of One Herbal Plant, 'Euphorbia Hypericifolia'

GanesanMuruga Perumal¹, Prabhu K², Rao MRK^{3*}.Janaki C. S.⁴, Kalaivannan J⁵, Kavimani M¹

¹Professor, Department of Anatomy, SreeBalaji Medical College and Hospital, Chennai, Tamil Nadu, India.

² Associate Professor, Department of Anatomy, SreeBalaji Medical College and Hospital, Chennai, Tamil Nadu, India.

³ Consultant Scientist, M/s. Noahs Laboratories, No, 8/1, Old Mahabalipuram Road, Thiruporur, Tamil Nadu 603110, India.

⁴ Associate Professor, Department of Anatomy, Bhaarath Medical College and Hospital, Chennai, Tamil nadu, India.

⁵Associate Professor, Department of Anatomy, Vinayaka Mission's Medical College and Hospital, Karikal, Vinayaka Mission's Research foundation, Salem, Tamil nadu, India.

Abstract

The present study deals with the GC MS analysis of one medicinal plant, *'Euphorbia hypericifolia'*. This plant has many ethno-medicinaluses. The decoction of the leaves and roots are used to gastrointestinal disorders, gonorrhoea, and menorrhagia. The leaf extract is used as antifungal, anticancer, sclerosis and warts. This plant was collected from nearby hills of Chengalpattu, Tamilnadu. The ethyl acetate extract of the aerialparts of the plant was subjected to GC MS study following standard protocols. I was observed that some very important molecules such as 1-Amino-2,6-dimethylpiperidine, 4(1H)-Pyridone, 6-Methoxy-2-phenacyloxy-3(2H)-pyridazinone, Cyclopentanecarboxylic acid, 4-nitrophenyl ester, Dodecanoic acid, Tetradecanoic acid , n-Hexadecanoic acid, 17-Octadecynoic acid, Oleic Acid, Methyl 9,10-octadecadienoate, 2-((Octan-2-yloxy)carbonyl)benzoic acid, Stigmasterol were shown in the GC MS profile. These molecules have medicinal roles which are in line with its ethno-medicinal. Further work is warranted to understand the molecular mechanism of action of each of the molecules.

Key words: GC MS, Ethyl acetate, 1-Amino-2,6-dimethylpiperidine, 4(1H)-Pyridone, 6-Methoxy-2phenacyloxy 3(2H)-pyridazinone, Cyclopentanecarboxylic acid, 4-nitrophenyl ester, Dodecanoic acid, Tetradecanoic acid, n-Hexadecanoic acid, Stigmasterol

INTRODUCTION

Euphorbia hypericifolia is plant belonging to Euphorbiacee family which has many ethnomedicinal values. The decoction of the leaves and roots are used to gastrointestinal disorders, gonorrhoeaand menorrhagia. The leaf extract is used as antifungal, anti-cancer, sclerosis and warts. Not much work has been undertaken on the medicinal role of this plant. Saini and Intekhab, 2016 have studied the phytochemicals present in this plant. Mwine and van Damme, 2011 have reviewed the medicinal significance of Euphorbiaceae as a family. The present works deals with the GC MS analysis of the ethyl acetate extract of the aerial parts of this plant. This work is in continuation of our work to establish the efficacy of the herbal plants, Ayurvedic and Sidhha medicines. (Priyadarshiniet al, 2017; Jayakumariet al, 2017; Raoet al, 2018; Vijayalakshmi and Rao, 2019; Yuvarajet al, 2019; Mutteviet al, 2020; Vijayalakshmi and Rao, 2020; Janakiet al, 2021).

MATERIALS AND METHODS

The plant '*Euphorbia hypericifolia*' was collected from the nearby hills at Chengalpattu, Tamil Nadu. The plant was identified by a qualified botanist at Chennai. The ethyl acetate extract of the shade dried whole plant was collected after 48 h of soaking. The extract was evaporated and the dried powder was used for GC-MS analysis by standard procedures.

GC-MS Procedure

Instrument: GC (Agilent: GC: (G3440A) 7890A. MS/MS: 7000 Triple Quad GCMS) was equipped with MS detector.

Sample Preparation

About 100 ml sample was dissolved in 1 ml of suitable solvents. The solution was stirred vigorously using vortex stirrer for 10 s. The clear extract was determined using GC for analysis.

GC-MS Protocol

Column DB5 MS (30 mm × 0.25 mm ID × 0.25 μ m, composed of 5% phenyl 95% methylpolysiloxane), electron impact mode at 70 eV; helium (99.999%) was used as carrier gas at a constant flow of 1 ml/min injector temperature 280°C; auxilary temperature: 290°C ion-source temperature 280°C.

The oven temperature was programmed from 50°C (isothermal for 1.0 min), with an increase of 40°C/min, to 170°C C (isothermal for 4.0 min), then 10°C/min to 310°C (isothermal for 10 min) fragments from 45 to 450 Da. Total GC running time is 32.02 min. The compounds are identified by GC-MS Library (NIST and WILEY).

RESULTS AND DISCUSSION

The results of the GC-MS analysis of the whole plant ethyl acetate extract, along with the possible medicinal role of each molecule of *Euphorbia hypericifolia* extract are tabulated in Table 1. Figure 1 represents the GC-MS profile of ethyl acetate extract of the whole plant of *Euphorbia hypericifolia*. The identification of metabolites was accomplished by comparison of retention time and fragmentation pattern with mass spectra in the NIST spectral library stored in the computer software (version 1.10 beta, Shimadzu) of the GC-MS along with the possible pharmaceutical roles of each bio molecule as per Dr. Duke's Phytochemical and ethno-botanical data base (National Agriculture Library, USA) and others as shown in Table 1. The results as shown in Table 1 indicate the medicinal roles of some of the molecules such as 1-Amino-2,6-dimethylpiperidine, 4(1H)-Pyridone, 6-Methoxy-2-phenacyloxy-3(2H)-pyridazinone, Cyclopentanecarboxylic acid, 4-nitrophenyl ester, Dodecanoic acid, Tetradecanoic acid , n-Hexadecanoic acid, 17-Octadecynoic acid, Oleic Acid, Methyl 9,10-octadecadienoate, 2-((Octan-2-yloxy)carbonyl)benzoic acid, Stigmasterol etc. The medicinal roles as described for these molecules could contribute to the ethno-medicinal roles of this plant. Further work, however is required to probe into the mechanism of each molecules as shown in the GC MS profile.

CONCLUSION

From the results it is clear that this plant does contain some important metabolites which have far reaching medicinal roles.

ACKNOWLEDGMENTS

The authors express their sincere thanks to all who have helped in this project.

REFERENCES

1. Saini,S., Intekhab, J. (2016) *Phytochemical studies on Euphorbiahypericifolia*. *International Education & Research Journal*, *2*(1), 63-65

2. Mwine, J. T., Van Damme, P. (2011) Why do Euphorbiaceae tick as medicinal plants? A review of Euphorbiaceae family and its medicinal features. *Journal of Medicinal Plants Research*, *5*(*5*), 652-662

3. GomathiPriyadarshini, Arul Amutha Elizabeth, Jacintha Anthony, Mudiganti Ram Krishna Rao, Prabhu. K., Aiswarya Ramesh, VaniKri,shna. (2017) The GC MS analysis of one medicinal plant, *Premnatomentosa. Journal of Pharmaceutical Sciences and Research*, **9**(9), 1595-1597

4. Jayakumari, S., Prabhu, K., Mudiganti Ram Krishna Rao, Bhupesh, G., Kumaran, D., Aishwariya Ramesh. (2017) The GC MS Analysis of a Rare Medicinal Plant *Aloe barbadensis. J. Pharm. Sci. & Res.9(7)*, 1035-1037

5. Rao, M. R. K., Vijayalakshmi, N. (2018) Preliminary phytochemical and GC MS analysis of different extracts of *Sphaeranthusindicus* leaves. *Indo American J of Pharmaceuical Sciences*, *5*(3), 1511-1520

6. Vijayalakshmi, N., Mudiganti Ram Krishna Rao. (2019) The antioxidant studies of two medicinal plants, *Sphaeranthusindicusand Psophocarpustetragonolobus*. *Asian J of pharmaceutical and Clinical Res*, *12(1)*, 321-327.

7. Yuvaraj, R., Mudiganti Ram Krishna Rao, Prabhu, K., Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N. (2019)The GC MS study of one medicinal plant, *Stachyterphetaindica*.*Drug Invention Today*, *12(9)*, 1665-1669

8. MutteviHyagreva Kumar, Prabhu, K., Mudiganti Ram Krishna Rao, Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N. (2019)The GC MS study of one medicinal plant, *Dodoneaangutifolia*. *Drug Invention Today*, *12(9)*, 1661-1664

9. Mudiganti Ram Krishna Rao, Vijayalakshmi, N., Prabhu, K., Sathish Kumar, M. (2019) The gas chromatography–mass spectrometry study of *Moringaoleifera* seeds. *DIT*, *12(10)*, 2172-2175

10. MutteviHyagreva Kumar, Prabhu, K., Mudiganti Ram Krishna Rao, Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N.(2020)The GC MS study of one medicinal plant, *AristolochiaIndica .DIT*, *12*(*12*), 2919-2923.

11. Vijayalakshmi, N., Mudiganti Ram Krishna Rao. (2020) 'Preliminary phytochemical and antioxidant studies of leaf extracts of one medicinal plant, *Vitexnegundo*".*RJPT*, *13*(*5*), 2167-2173

12. Janaki C. S.', Prabhu K., Mudiganti Ram Krishna Rao, Venkat Ramaiah, Shruti Dinkar, Vijayalakshmi, N., Kalaivannan. J. (2021) The GC MS analysis of Ethyl acetate extract of *Merremiaemerginata'*. *Ind J* of Natural Sciences, 12(67), 33638-33646

13. Dr.Duke's Phytochemcial and Ehnobotanical Databases.U.S. Department of Agriculture, Agricultural Research Service.1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ <u>http://dx.doi.org/10.15482/USDA.ADC/1239279</u>

Qualitative Compound Report

Figure 1. Shows the GC MS profile graph of ethyl acetate extract of Euphorbia hypericifolia'

Table1. Indicates the retentions time, types of possible compound, molecular formula, molecular mass, percentage peak area and the possible medicinal roles of each compound as shown in the GC MS profile of *Euphorbia hypericifolia*'

Ret.	Compound	Mol.	Mol.	%	Possible Medicinal Role
Tim		Formula	Mass	Peak	
е				Area	
3.67	13-Heptadecyn-1-ol	C17H32O	252.2	1.80	Oligosaccharide provider
3.80	1,4-Butanediamine, 2,3- dimethoxy-N,N,N',N'- tetramethyl-, [S- (R*,R*)]-	C10H24N 2O2	204.2	1.92	Not Known
4.00	1-Amino-2,6-dimethylpiperidine	C7H16N2	128.1	1.91	Increases Aromatic Amino acid decarboxylase activity
4.56	4(1H)-Pyridone	C5H5NO	95	1.34	11Beta HSD inhibitor, 17-beta- hydroxysteroid dehydrogenase inhibitor, 5 HETE inhibitor, 5 HT inhibitor, 8 HETE inhibitor, Anti 5- HT, Anti HIV integrase, Aryl hydrocarbon hydroxylase inhibitor, HDL genic, Hematopoietic
4.89	6-Methoxy-2-phenacyloxy- 3(2H)-pyridazinone	C13H12N 2O4	260.1	1.17	11Beta HSD inhibitor, 17-beta- hydroxysteroid dehydrogenase inhibitor, 5 HETE inhibitor, 5 HT inhibitor, 8 HETE inhibitor, Anti 5- HT, Anti HIV integrase, Aryl

-		I	-	1	
					hydrocarbon hydroxylase
					Hematopoietic
5.28	3-Cyclobutene-1,2-dicarboxylic	C8H10O4	170.1	1.04	Acidifier, Arachidonic acid
	acid, dimethyl ester				Inhibitor, Increases Aromatic
					Amino acid decarboxylase
					activity, Inhibits production of
					uric acid, Urine acidifier
5.69	Furane-2-carboxaldehyde, 5-(4-	C12H9NO	247	6.54	Not Known
	nitrophenoxymethyl)-	5			
5.84	.betad-Lyxofuranoside, O-	C14H28O	276.2	1.00	17-beta-hydroxysteroid
	nonyl-	5			dehydrogenase inhibitor,
					Antiamyloid-Beta, Anti TGF-Beta,
					Beta-2-Receptor-Agonist, Beta-
					Adrenergic receptor blocker, Beta
					Galactosidase inhibitor, Beta-
					Glucuronidase inhibitor, Aldehyde
6.20	1. De alta a 2. a a a	05110.0	044	4 70	oxidase inhibitor
6.20	1-Penten-3-one	C5H8O	84.1	1./2	Not Known
6.33	Cyclopentanecarboxylic acid, 4-	C12H13N	235.1	15.75	Acidifier, Arachidonic acid
	nitrophenyl ester	04			Inhibitor, Increases Aromatic
					Amino acid decarboxylase
					activity, inhibits production of
7 20	1.2.2. Democratical	6611602	120	0.04	uric acid, Orine acidiner
7.39	1,2,3-Benzenetrioi	C6H6O3	126	0.94	
7.58	Dodecanoic acid	C12H24O	200.2	1.15	Acidifier, Arachidonic acid
		Z			Amino acid docarboxulaco
					Amino acia decarboxylase
					uric acid Urine acidifier
8.92	3-Octadecyne	С18Н34	250.3	1 68	Not Known
9.07	Tetradecanoic acid	C14H28O	228.2	1 88	Acidifier Arachidonic acid
5.07		2		1.00	Inhibitor Increases Aromatic
		-			Amino acid decarboxylase
					activity. Inhibits production of
					uric acid, Urine acidifier
9.27	Phytol	C20H40O	296.3	1.34	Not Known
10.4	n-Hexadecanoic acid	C16H32O	256.2	21.13	Acidifier, Arachidonic acid
6		2			Inhibitor, Increases Aromatic
					Amino acid decarboxylase
					activity, Inhibits production of
					uric acid, Urine acidifier,
					Anaphylactic, Arylamine N
					acetyltransferase inhibitor,
					decreases norepinephrine
					production, Down regulates
					nuclear and cytosol androgen
					reuptake, GABA-nergic, Increase
					NK cell activity, inhibits
I			1		production of tumor necrosis

					factor, Myo-neuro-stimulator
11.3 0	17-Octadecynoic acid	C18H32O 2	280.2	0.98	Acidifier, Arachidonic acid Inhibitor, Increases Aromatic Amino acid decarboxylase activity, Inhibits production of uric acid, Urine acidifier,
12.2 7	Oleic Acid	C18H34O 2	282.3	23.02	Acidifier, Arachidonic acid Inhibitor, Increases Aromatic Amino acid decarboxylase activity, Inhibits production of uric acid, Urine acidifier,
12.4 6	Methyl 9,10-octadecadienoate	C19H34O 2	294.3	2.68	.Catechol-O-Methyl-Transfearse inhibitor, Methyl donar
12.7 6	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	C18H30O 2	278.2	2.45	Not known
18.2 8	2-((Octan-2- yloxy)carbonyl)benzoic acid	C16H22O 4	278.2	0.91	Acidifier, Arachidonic acid Inhibitor, Increases Aromatic Amino acid decarboxylase activity, Inhibits production of uric acid, Urine acidifier,
20.2 2	trans-Geranylgeraniol	C20H34O	290.3	2.81	Catechol-O-Methyl-Transfearse inhibitor, Increases Glutathione-s- Transferase Activity, Decrease Glutamate Oxaloacetate transaminase activity, Decreases Glutamate pyruvate transaminase, Glycosyltransferase inhibitor, Glutathione-S- Transfearse inhibitor, Increases glyoxalate transamination, Reverse transcriptase inhibitor,
24.0 0	Stigmasta-5,22-dien-3-ol, acetate, (3.beta.)-	C31H50O 2	454.4	1.44	Not known
24.7 0	Androstan-17-one, 3-ethyl-3- hydroxy-, (5.alpha.)-	C21H34O 2	318.3	2.40	Not known
27.6 3	Stigmasterol	C29H48O	412.4	0.97	Precursor of progesterone, acts as intermediate in the biosynthesis of androgens and estrogens, anti-osteoarthritic, antihypercholesterolemic, cytotoxic, antitumor, hypoglycemic, antimutagenic, antioxidant, anti-inflammatory, analgesic