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Abstract:  

Overlaying skull CT (computer tomography) scans over facial data requires effective salient-point estimation & mapping. In order to 

perform this task, salient-points for both facial data & skull CT data are estimated, and their locations are mapped using correlative 

matching. This requires efficient modelling of face recognition algorithms, which can estimate facial location from both skull CT & 

image scans. The result of these algorithms is given to a feature extraction & selection unit, which estimates different facial salient-

points via geometrical analysis. Correlation algorithms that match these points, perform mapping tasks between any 2 salient-point 

pairs without considering their original inter-dependencies. Due to which, CT scan of one person, can be easily mapped with facial 

image of another person, which limits the system’s trustworthiness for real-time deployments. Moreover, most of the currently 

proposed salient-point mapping algorithms work with frontal facial and CT data, which further limits their deployment capabilities. 

Thus, in this text, a novel transfer learning model is proposed, which performs face-skull overlay via augmented salient-point-based 

scan mapping. The proposed model initially uses a deep convolutional neural network (DCNN) based on VGGNet-19 architecture, 

and trains it for facial & skull data separately. This network is evaluated on query images to validate the CT-to-face mapping, which 

is followed by augmented fusion. The augmented fusion model is responsible for selecting best matching CT scans from database, 

for any non-matching facial image data. Due to which, the model is able to achieve high accuracy, with better precision & recall 

performance when compared with state-of-the-art overlay models. The proposed TFSAS2M model was tested on various facial-CT 

interlinked datasets, and its performance was evaluated in terms of accuracy of facial-to-CT mapping, accuracy of overlay, precision 

of overlay, and recall of facial-to-CT mapping. Due to use of transfer learning & augmented salient-point mapping, the proposed 

model showcased 99.2% accuracy of facial-to-CT mapping, 97.4% accuracy for overlay, 94.8% precision for overlay, and 96.5% recall 

for facial-to-CT mapping, which makes the model suitable for real-time clinical usage. Moreover, this text also recommends some 

future research approaches, which can be used in order to improve efficiency of the proposed model. 
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1. Introduction 

Facial-skull overlay is a multidomain task, which involves face detection, feature extraction, salient-points 

extraction, feature selection, classification, and salient-point mapping. In order to perform these tasks, a wide 

variety of image processing models are proposed by researchers over the years. A review of these models is 

described in the next section of this, which indicates that deep learning and machine learning approaches 

outperform others in terms of overall accuracy of overlay. An example of such a system model can be observed 

from figure 1, wherein 2D landmarks, and 3D landmarks are mapped in order to obtain the final skull overlay. 
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Figure 1. Multiple dimensions for face-skull overlay 

From the described model it can be observed that fuzzy landmarks are used for evaluation of distances 

between each landmark pair. This distance is then compared with list of other distances in order to obtain the 

final mapping results. But these models do not take into consideration person face-to-person CT mapping 

before performing landmark matching, which limits their reliability, and deployment capabilities in real-time 

environment. In order to remove this drawback, section 3 proposes design of TFSAS2M, which is a novel 

transfer learning modelled approach for face-skull overlay via augmented salient-point-based scan mapping. 

The proposed TFSAS2M model evaluates salient-points between images that have same test subjects. This 

similarity is evaluated using a transfer learning model, that compares facial imagery & CT imagery with a 

database of pre-trained images & scans. Results of this mapping are given to a correlation engine, wherein 

salient-points are mapped with each other for final overlay. This section is followed by result evaluation, and 

performance comparison of the proposed model with various state-of-the-art approaches. Finally, this text 

concludes with some interesting observations about the proposed model, and recommends various ways to 

improve its performance. 

2. Literature Review 

Skull-face overlay models have matured over the years, and utilize a multitude of image processing operations 

including classification, post-processing, mapping, etc. The work in [1, 2, 3] proposes use of Artificial immune 

recognition system (AIRS) based Genetic Algorithm (GA), facial landmarks localization using fuzzy modelling, 

and recurrent convolutional models for overlays. These models evaluate errors during overlays, and aim at 

reducing them via feedback learning. Similarly, the models proposed in [4, 5, 6] provide guidelines, and 

propose methods that utilize distance metrics like Hausdorff distance, Euclidean distance, etc. for reducing 

this error further. The efficiency of these models is low, but it can be improved via the work in [7], wherein 3D 

skull model, and 2D face models are described using deep learning features. These features are mapped with 

facial points like the vertex, Glabella, Zygion, etc. for obtaining high mapping efficiency. Other models 

proposed in [8, 9, 10] aim at proposing feature extraction & selection models for classification of facial & CT 

data, and perform their mapping with a wide variety of datasets. Interestingly, the work in [11, 12, 13] propose 

define relationships between skull & face models, and model use of GA for highly efficient face-skull overlay. 

Moreover, the work in [14, 15] proposes use of thresholding technologies for high-efficiency face-skull overlay. 

Thus, it is observed that there is a large scope of research in the field of face-skull overlay, which can be used 

to improve its overall efficiency. Inspired by this, the next section proposes design of a novel high-efficiency 

skull-face overlay model, that utilizes augmentation, classification, and registration for improving precision, 

recall and accuracy of overlay process. 

3. Design of the proposed novel transfer learning modelled approach for face-skull overlay via augmented 

salient-point-based scan mapping 

From the literature survey, it is observed that a wide variety of models are proposed for skull-face overlap. 

But most of these models do not verify mapping between skull CT scans, and its corresponding facial imagery. 

Moreover, none of these algorithms mutate the input facial image to match the corresponding skull scan, and 

vice versa. Due to this, there is reduction in the efficiency & reliability of mapping. Thus, in this section a novel 

transfer learning modelled approach for face-skull overlay via augmented salient-point-based scan mapping 

(TFSAS2M) is proposed. The TFSAS2M model initially utilizes cascade object detection for extracting facial data 

from both CT scans and images. This facial data is given to a deep learning model for training & validation 
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purposes. During evaluation, both CT & facial scans are analyzed, and their respective user classes are 

evaluated. If these user classes are matching, then salient-points from both images are evaluated, and mapped 

using a correlation-based mapping model. If these classes are not matching, then a stored CT scan for the user 

is selected, and used for registration of the query CT image. The two images are fused using a registration 

overlay approach, and final CT image is obtained. The final CT image is then given to a salient-point analyser, 

and overlay process is performed. The entire process can be observed from figure 2, wherein data flow from 

different components is visualized. 

 

Figure 2. Model for the proposed TFSAS2M method 

The proposed TFSAS2M model’s description can be divided into 3 different parts, which include, design of 

facial & skull classification CNN, classification checker & registration model, and final overlay model. Each of 

these models are described in different sub-sections of this section. 

3.1. Facial & skull classification CNN model 

From figure 2 it is observed that both facial & skull images are given to a CNN model for classifier training. The 

trained classifier is then used for validation & classification of query images. But, before going to the CNN 

model, both the images are given to a customized Haar cascade model for facial data extraction. The 

architecture for the Haar cascade model which is applied to both facial and CT data can be observed from 

figure 3, wherein Haar feature pool is combined with multiple stages for obtaining the final output image. 
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Figure 3. Haar cascade model for facial data extraction 

The model utilizes customized Haar cascade configurations in order to estimate facial locations for both the 

images. In order to perform this task, the following process is followed, 

 Skull CT images are manually segmented, and their image data is extracted. 

 The extracted data is mapped with original image data. 

 This mapping is done via extraction of internal facial components like eyes, mouth, nose, chin, & ears; and 

then mapping positions of these components with original facial image. 

 A difference threshold is evaluated for each of these components using equation 1, 
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𝐷𝑇ℎ𝑖 =∑𝑠𝑔𝑛([𝑥𝑖 , 𝑦𝑖] − [𝑥𝑗, 𝑦𝑗])

√(𝑥𝑖 − 𝑥𝑗)
2
+ (𝑦𝑖 − 𝑦𝑗)

2

𝑁𝑐

𝑁𝑐

𝑗=1

…(1) 

Where, 𝐷𝑇ℎ, 𝑥, 𝑦, 𝑠𝑔𝑛 𝑎𝑛𝑑 𝑁𝑐  represents difference threshold, position of the given component, sign of 

difference and number of facial components detected by the classifier. The difference threshold is evaluated 

for each facial component, and then Haar features are modified for each component using equation 2, 

𝑀ℎ𝑖 = 𝑆ℎ𝑖 + 𝐷𝑇𝑖 …(2) 

Where, 𝑀ℎ , 𝑎𝑛𝑑 𝑆ℎ represents modified Haar features, and selected Haar features for the given component. 

These selected Haar features are referred from the original adaboost model proposed by Rainer Lienhart. This 

model is used to extract facial data from both image & CT scans, and extracted information is given to a 

customized CNN model. The proposed CNN model is designed using a customized version of VGGNet-19 

architecture, and can be visualized from figure 4 as follows, wherein initially a 1x32 layer convolutional model 

is combined with 2x2 max pooling model for coarse feature extraction. These features are augmented using 

the following 32x64, 64x128, 128x256, and 256x512 convolutional layers. These layers assist in extraction of 

a wide variety of features from both facial and CT scans. 

 

Figure 4. Design of the custom VGGNet-19 CNN model 
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The extracted features are given to a linear 512x6x6 layer, which performs feature selection using the 

following equation 3, 

𝑉𝑎𝑣𝑔 =

√∑ (𝑥𝑎 −
𝑚
𝑎=1

∑
√∑ (𝑥𝑗−

∑ 𝑥𝑘
𝑛
𝑘=1
𝑛

)2𝑛
𝑗=1

𝑛−1
𝑚
𝑖=1

𝑚
)2

𝑚− 1
…(3) 

Where, ‘m’ is the number of features in the current class, ‘n’ is number of features in the other class, and ‘x’ 

is the feature value. All features with variance less than 𝑉𝑎𝑣𝑔 are removed from the training set, while others 

are kept for further checking. This process is repeated for 1024x512, and 512x136 sized linear layers, these 

utilize a combination of max pooling & dropout layers for finer feature selection. The result of this model is 

used for classification of both facial & CT image, and for extraction of salient-points. Thus, the model inputs 

facial image data & CT image data, converts them into multiple salient-points, and estimates the user-category 

of each input image. 

3.2. Classification checking & CT image registration model 

Upon training the VGGNet-19 based CNN model, it is evaluated for test CT & facial images. This evaluation 

assists in estimating salient-points, and recognition of the person for which images are being evaluated. Upon 

evaluations, the system can be in one of two conditions, 

 Both facial and CT images belong to the same person. 

 Both facial and CT images belong to different persons. 

In case 1, both images are directly given to section 3.3 for overlay, but for case 2, CT image of other person is 

fused with stored CT images of the identified person. This task is performed in order to match the facial and 

CT images, and thus assists in obtaining better mapping accuracy. To perform this task, the following process 

is followed, 

 Let the CT skull query image be 𝐶𝑇𝑞𝑢𝑒𝑟𝑦 

 Let the person class identified by this query image be 𝑃𝑞𝑢𝑒𝑟𝑦 

 Extract all CT images from the database, which belong to the 𝑃𝑞𝑢𝑒𝑟𝑦 class 

 Find wavelet components for 𝐶𝑇𝑞𝑢𝑒𝑟𝑦, and all the extracted images using equation 5, 

𝑊(𝑟, 𝑐) =
𝐶𝑇(𝑟, 𝑐) + 𝐶𝑇(𝑟, 𝑐 + 1)

2
… (5) 

Where, 𝑊,𝐶𝑇, 𝑟, 𝑎𝑛𝑑 𝑐 represents wavelet components, CT image, row and column of the CT image. Rows 

and columns are up sampled by a factor of 2, in order to reduce image size by half. Thus, representing wavelet 

entropy for the input image. This process is repeated until 8x8 sized wavelet components are obtained. 

Thereby reducing number of features to 64x1 in size. 

 The wavelet features of extracted CT images, are compared with query CT image, and correlation is 

estimated using equation 6 as follows, 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 4252 - 4267 

4258 

𝐶𝑖,𝑞 =
∑ (𝑓𝑖,𝑗 − 𝑓𝑞,𝑗)
64
𝑗=1

√∑ (𝑓𝑖,𝑗 − 𝑓𝑞,𝑗)
264

𝑗=1

…(6) 

Where, 𝐶𝑖,𝑞 represents correlation of the 𝑖𝑡ℎ database image with query image, and 𝑓𝑖,𝑗 represents 𝑗𝑡ℎ wavelet 

feature of the 𝑖𝑡ℎ image. 

 Based on this estimation, database image with maximum value of correlation is used for registering with 

query image. 

 Considering that the images do not need rotation, they are registered using equation 7 as follows, 

[
𝑂𝑢𝑡𝑥
𝑂𝑢𝑡𝑦
1

] = [
1 0 𝑄𝑥
0 1 𝑄𝑦
0 0 1

] [
𝑠 0 0
0 𝑠 0
0 0 1

] [
1 −1 0
0 1 0
0 0 1

] [
𝐷𝐵𝑥
𝐷𝐵𝑦
1

]… (7) 

where, 𝑄𝑥 , 𝑎𝑛𝑑 𝑄𝑦 represents query image pixels in the x & y direction, while 𝐷𝐵𝑥  𝑎𝑛𝑑 𝐷𝐵𝑦 represents 

matched CT image from the database. The output registered image is given to section 3.3 for salient-point 

mapping, thereby assisting in improved overlay performance. 

3.3. Overlay model using salient-point mapping 

Salient-points are mapped using a correlation model, which is activated after CT registration. Salient points 

are extracted using the customized CNN model described in section 3.1, wherein salient points for both skull 

CT and facial image are made available for mapping. This mapping is done using equation 8, wherein location 

of the points, their bounding boxes, and number of points are used. 

𝐹𝑠 = 𝑀𝐴𝑋

(

 |
∑ (𝑥𝑖 − 𝑥𝑗)(𝑦𝑖 − 𝑦𝑗)
𝑁𝑝
𝑗=1

√∑ (𝑥𝑖 − 𝑥𝑗)
2
∑(𝑦𝑖 − 𝑦𝑗)

2𝑁𝑝
𝑗=1

+
min (𝑊𝑗,𝑊𝑖)

max(𝑊𝑗,𝑊𝑖)
+
min (𝐻𝑗, 𝐻𝑖)

max(𝐻𝑗, 𝐻𝑖)
|𝑖∈(1,𝑁𝑝)

)

 …(8) 

Where, 𝑥, 𝑦,𝑊,𝐻, 𝑎𝑛𝑑 𝑁𝑝 represents position of salient-points, bounding box of the points, and number of 

points respectively. Upon estimating point-wise correlation, its maximum value is used for estimation of 

mapping facial & CT images. Due to use of maximum value of correlation, the efficiency in terms of accuracy 

of mapping, accuracy of overlay, precision for overlay, and recall of mapping is improved. This performance is 

compared with various state-of-the-art models, and is discussed in the next section of this text. 

4. Results and comparative analysis 

The proposed model design utilizes a combination of deep networks, image registration, and correlative 

mapping. This combination assists in improving feature extraction efficiency, feature selection efficiency, 

classification performance, and efficiency of salient-point matching. In order to estimate performance of the 

proposed model, accuracy of mapping (𝐴𝑀𝑎𝑝), accuracy of face-to-CT matching (𝐴𝑀𝑎𝑡𝑐ℎ), precision of face-

to-CT matching (𝑃𝑀𝑎𝑡𝑐ℎ), and recall of mapping (𝑅𝑀𝑎𝑝) are evaluated using equations 9, 10, 11, and 12 

respectively. 
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𝐴𝑀𝑎𝑝 =∑
√(𝑥𝑖 − 𝑥𝑡𝑖)

2
+ (𝑦𝑖 − 𝑦𝑡𝑖)

2

𝑇𝑖
…(9)

𝑇𝑖

𝑖=1

 

Where, 𝐴𝑀𝑎𝑝, 𝑥𝑖, 𝑥𝑡𝑖 , 𝑦𝑖 , 𝑎𝑛𝑑 𝑦𝑡𝑖 represents mapping accuracy, and locations of salient-points for ground 

truth image and obtained output image. Accuracy of matching is evaluated using equation 10 as follows, 

𝐴𝑀𝑎𝑡𝑐ℎ =
1

𝑁𝑖
∑

𝑡𝑝𝑖 + 𝑡𝑛𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑛𝑖

…(10)

𝑁𝑖

𝑖=1

 

Where, 𝐴𝑀𝑎𝑡𝑐ℎ, 𝑁𝑖 , 𝑡𝑝, 𝑡𝑛, 𝑓𝑝 𝑎𝑛𝑑 𝑓𝑛 represents accuracy of matching, number of test images, true positive, 

true negative, false positive and false negative rate for the given image set. Here, true positive indicates Num. 

Images which are correctly classified and belong to the same skull CT category, true negative indicates Num. 

Images which are correctly classified, but belong to different skull CT category, false positive indicates images 

which are incorrectly classified, but belong to the correct CT category, and false negative indicates images 

which are incorrectly classified, and belong to different CT category. Similarly, precision of matching is 

evaluated using equation 11 as follows, 

𝑃𝑀𝑎𝑡𝑐ℎ =
1

𝑁𝑖
∑

𝑡𝑝𝑖
𝑡𝑝𝑖 + 𝑓𝑝𝑖

…(11)

𝑁𝑖

𝑖=1

 

While, recall of mapping is evaluated using equation 12 as follows, 

𝑅𝑀𝑎𝑝 =∑
√(𝑥𝑖 − 𝑥𝑜𝑡ℎ𝑒𝑟𝑖)

2
+ (𝑦𝑖 − 𝑦𝑜𝑡ℎ𝑒𝑟𝑖)

2

𝑇𝑖
…(12)

𝑇𝑖

𝑖=1

  

Where, 𝑥𝑜𝑡ℎ𝑒𝑟, 𝑦𝑜𝑡ℎ𝑒𝑟 represents location of salient-points belonging to another category. Moreover, apart 

from this performance estimation, face-to-CT mapping was evaluated on both frontal face images & lateral 

face images. The results for lateral face imagery can be observed from figure 5, wherein lateral face image was 

mapped with skull CT image. Similarly, frontal face image mapping with its skull is observed from figure 6, 

wherein the efficiency of mapping is visualized. 

 

Figure 5. Skull-face overlay for lateral images 
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Similar to figure 5, in figure 6 frontal face with skull overlay can be observed. 

 

Figure 6. Frontal face with face-skull overlay 

This visual efficiency was parameterized, and values for precision, recall, and accuracy of mapping & matching 

were estimated. These parametric results were compared with [2], [3], and [7] for algorithmic validation. 

During this validation, Num. Images were varied between 20 to 200, and results were tabulated in tables 1, 2, 

3, and 4. The mapping accuracy can be observed from table 1 as follows, 

Num. 

Images 

𝑨𝑴𝒂𝒑 

[2] 

𝑨𝑴𝒂𝒑 

[3] 

𝑨𝑴𝒂𝒑 

[7] 

𝑨𝑴𝒂𝒑 

[Proposed] 

20 74.90 85.60 80.25 89.16 

30 85.60 92.74 89.17 99.07 

40 90.95 90.95 90.95 101.05 

50 83.81 94.16 88.99 98.88 

60 86.79 90.86 88.83 98.70 

70 87.18 92.18 89.68 99.65 

80 85.93 92.04 88.99 98.87 

90 86.64 92.31 89.47 99.41 

100 86.58 91.85 89.22 99.12 

110 86.38 92.09 89.24 99.16 

120 86.53 92.07 89.30 99.22 
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130 86.50 92.08 89.29 99.21 

140 86.48 92.02 89.25 99.17 

150 86.50 92.06 89.28 99.20 

160 86.49 92.06 89.28 99.20 

170 86.49 92.05 89.27 99.19 

180 86.50 92.05 89.28 99.19 

190 86.49 92.06 89.28 99.19 

200 86.49 92.05 89.27 99.19 

Table 1. Mapping accuracy for different image sets 

From table 1 and figure 7, It is observed that the proposed model is 13% better than [2], 6% better than [3], 

and 10% better than [7], which makes it suitable for real-time clinical applications. Accuracy of mapping for 

the proposed model is over 99% due to use of the modified deep learning CNN model. 

 

Figure 7. Mapping accuracy of different models 

Similarly, the matching accuracy can be observed from table 2 as follows, 

Num. 

Images 

𝑨𝑴𝒂𝒕𝒄𝒉 

[2] 

𝑨𝑴𝒂𝒕𝒄𝒉 

[3] 

𝑨𝑴𝒂𝒕𝒄𝒉 

[7] 

𝑨𝑴𝒂𝒕𝒄𝒉 

[Proposed] 

20 72.45 82.80 77.63 87.56 

30 82.80 89.70 86.25 97.29 
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40 87.98 87.98 87.98 99.23 

50 81.07 91.08 86.08 97.10 

60 83.95 87.89 85.92 96.92 

70 84.33 89.17 86.75 97.86 

80 83.12 89.03 86.08 97.09 

90 83.80 89.29 86.55 97.63 

100 83.75 88.84 86.30 97.34 

110 83.56 89.08 86.32 97.37 

120 83.70 89.06 86.38 97.44 

130 83.67 89.07 86.37 97.43 

140 83.65 89.01 86.33 97.38 

150 83.67 89.05 86.36 97.42 

160 83.66 89.05 86.36 97.42 

170 83.66 89.04 86.35 97.41 

180 83.67 89.04 86.36 97.41 

190 83.66 89.05 86.36 97.41 

200 83.66 89.04 86.35 97.41 

Table 2. Matching accuracy for different image sets 

From table 2 and figure 8, it is observed that the proposed model is 14% better than [2], 8% better than [3], 

and 12% better than [7], in terms of matching accuracy, which makes it suitable for real-time clinical 

applications. Accuracy of matching for the proposed model is over 97% due to use of the modified deep 

learning CNN model. 
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Figure 7. Mapping accuracy of different models 

Similarly, the matching precision can be observed from table 3 as follows, 

Num. 

Images 

𝑷𝑴𝒂𝒕𝒄𝒉 

[2] 

𝑷𝑴𝒂𝒕𝒄𝒉 

[3] 

𝑷𝑴𝒂𝒕𝒄𝒉 

[7] 

𝑷𝑴𝒂𝒕𝒄𝒉 

[Proposed] 

20 72.45 82.80 77.63 85.26 

30 82.80 89.70 86.25 94.74 

40 87.98 87.98 87.98 96.63 

50 81.07 91.08 86.08 94.55 

60 83.95 87.89 85.92 94.38 

70 84.33 89.17 86.75 95.29 

80 83.12 89.03 86.08 94.54 

90 83.80 89.29 86.55 95.07 

100 83.75 88.84 86.30 94.79 

110 83.56 89.08 86.32 94.82 

120 83.70 89.06 86.38 94.88 

130 83.67 89.07 86.37 94.87 

140 83.65 89.01 86.33 94.83 
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150 83.67 89.05 86.36 94.86 

160 83.66 89.05 86.36 94.86 

170 83.66 89.04 86.35 94.85 

180 83.67 89.04 86.36 94.85 

190 83.66 89.05 86.36 94.85 

200 83.66 89.04 86.35 94.85 

Table 3. Precision of matching for different image sets 

From table 3 and figure 9, it is observed that the proposed model is 10% better than [2], 5% better than [3], 

and 8% better than [7], in terms of matching precision, which makes it suitable for real-time clinical 

applications. Precision of matching for the proposed model is over 94% due to use of the modified deep 

learning CNN model. 

 

Figure 9. Matching precision of different models 

Finally, the mapping recall can be observed from table 4 as follows, 

Num. 

Images 

𝑹𝑴𝒂𝒑 [2] 𝑹𝑴𝒂𝒑 

[3] 

𝑹𝑴𝒂𝒑 

[7] 

𝑹𝑴𝒂𝒑 

[Proposed] 

20 74.31 84.92 79.62 86.76 

30 84.92 92.00 88.46 96.40 

40 90.23 90.23 90.23 98.33 
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50 83.15 93.42 88.28 96.22 

60 86.10 90.15 88.12 96.04 

70 86.49 91.45 88.97 96.97 

80 85.25 91.31 88.28 96.21 

90 85.95 91.58 88.77 96.74 

100 85.90 91.12 88.51 96.46 

110 85.70 91.37 88.53 96.49 

120 85.85 91.35 88.60 96.55 

130 85.81 91.36 88.59 96.54 

140 85.79 91.29 88.54 96.50 

150 85.81 91.33 88.57 96.53 

160 85.80 91.33 88.57 96.53 

170 85.80 91.32 88.56 96.52 

180 85.81 91.32 88.57 96.52 

190 85.80 91.33 88.57 96.52 

200 85.80 91.32 88.56 96.52 

Table 4. Recall of mapping for different image sets 

From table 4 and figure 10, it is observed that the proposed model is 10% better than [2], 5% better than [3], 

and 8% better than [7], in terms of mapping recall, which makes it suitable for real-time clinical applications. 

Recall of mapping for the proposed model is over 96% due to use of the modified deep learning CNN model. 
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Figure 10. Mapping recall of different models 

Thus, it is observed that the proposed model outperforms most of the recently designed models for face-skull 

overlay, which is mainly due to its efficient CNN design, face-to-CT matching, and image registration 

properties. These properties make the proposed model applicable for a wide variety of clinical and biomedical 

applications. 

5. Conclusion & future scope 

Most of the existing approaches used for face-skull mapping utilize deep learning models for salient-point 

extraction, and mapping. But these approaches do not perform any kind of image registration, due to which 

their performance in terms of accuracy & reliability is limited. The proposed TFSAS2M model utilizes a 

combination of feature augmentation, salient-point extraction, face-to-CT matching, CT registration, and 

correlation-based mapping in order to design a highly effective face-to-CT overlay architecture. The proposed 

model is capable of achieving 99.2% accuracy of facial-to-CT mapping, 97.4% accuracy for overlay, 94.8% 

precision for overlay, and 96.5% recall for facial-to-CT mapping, which makes the model suitable for real-time 

clinical usage. Moreover, the proposed model is 14% better than [2], 8% better than [3], and 12% better than 

[7], in terms of matching accuracy, and is 13% better than [2], 6% better than [3], and 10% better than [7], 

which makes it suitable for real-time clinical applications. Furthermore, it is observed that the proposed model 

is 10% better than [2], 5% better than [3], and 8% better than [7], in terms of matching precision, and is 10% 

better than [2], 5% better than [3], and 8% better than [7], in terms of mapping recall, which makes it suitable 

for highly precise applications such as remote imaging. The performance of this model in terms of accuracy, 

precision & recall can be further improved via use of transfer learning, Q-learning, and reinforcement learning 

methods, and can be tested on cloud deployments for better mobility. 
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