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Abstract  

- - 

pre* - set. Also, introduce the class of fuzzy stronglypre* - I – open sets which is strictly placed between 

the class of all fuzzy pre – I – open and the class of all fuzzy pre* - I – open subsets of X. The Concepts of weakly fuzzy γ - I –open 

sets, weakly fuzzy semi – I open sets are used via idealization. Furthermore, some properties, characterizations and implications of 

several generalizations of fuzzy open sets are discussed. New Decomposition of fuzzy α- - -set and fuzzy β- -

closed set are obtained by using the above sets 

Index Terms: - -set, FβI* open set, 

 

Introduction and Preliminaries 

Johann Benedict Listing coined the term topology in the nineteenth century, but the concept of a 

topological space did not emerge until the first decades of the twentieth century. In current scientific 

investigations, fuzzy set is one of the most essential and helpful terms. Zadeh[2] was the first to establish 

the concept of fuzzy sets in 1965. Vaidyanathaswamy[5] first suggested the method of ideal topological 

spaces in 1945. Mahmoud[3] and Sarkar[1] proposed many of the ideal notions in the fuzzy trend 

separately in 1990, also looked into a variety of other factors. One of the numerous issues in the field is the 

decomposition of fuzzy continuity in fuzzy Topology. A nonempty collection  of fuzzy subsets of Y is called a 

fuzzy ideal if and only if 

 1. Q ∈ and P ≤ Q, then P ∈ (heredity), 

2. P ∈  and Q ∈ then P ∨ Q ∈ (finite additivity). 

The triplet (Y, τ, ) means a fuzzy space with a fuzzy ideal  and fuzzy topology τ(short, fits).  

Definition 1.1.A fuzzy set A of a fuzzy ideal topological space(Y, τ,) is called 

1. A fuzzy - – open set[1], if A < Int(A*); 

2. A fuzzy α--open[6] , if A ≤Int(Cl* (Int(A))); 

3. A fuzzy semi--open[8],if A ≤Cl* (Int(A)); 

4. A fuzzy pre--open[7] ,if A ≤Int(Cl* (A)); 

5. A fuzzy t--set[7], if Int(Cl* (A)) = Int(A); 

6. A fuzzy ∗ − perfect set[11], if A = A*; 

7. A fuzzy semi --regular set[4], if A is both a fuzzy t--set and a fuzzy semi  -open set; 

8. A fuzzyα* --set[6], if Int(A)=Int(Cl* (Int(A))); 

9. A fuzzy regular--closed[4], if A=(Int(A))*; 

10. A fuzzy - -set[4] , if A∈(X) ={U˄V : U is fuzzy open and v is fuzzy semi--regular}; 

11. A fuzzy Sβ -open set[10],if A ≤Cl* (Int(Cl*(A))); 
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12. A fuzzy β--open[6] , if A ≤Cl(Int(Cl* (A))); 

13. A almost fuzzy strongly −  – open set[10], if A < Cl*(Int(A*)); 

Definition 1.2. [12]. A subset A of a fuzzy ideal topological space (Y, τ, ) is called Weakly fuzzy 𝛾 –  - Open 

set if A < Cl* (Int(Cl(A)))∨Cl(Int(Cl* (A))) . 

Proposition 1.1.[4]. Let (Y, τ, ) be a fuzzy ideal topological space. Then 

 (1) Every fuzzy semi--regular set is a fuzzy t--set. 

 (2) Every fuzzy semi--regular set is a fuzzy semi--open set. 

Definition 1.3.[11]In ideal topological space (Y,τ,I), I is said to be codense if τ˄ I = ϕ. 

Definition 1.4.A subset A of a fuzzy topological space (Y, τ) is called  

(a) A fuzzy pre – open set, if A < Int(Cl(A));  

(b) A fuzzy β – open set, if A < Cl(Int(Cl(A))); 

Definition 1.4.A subset H of an ideal topological space (Y, τ, ) is called a B – I set[9] if if H ∈- (Y)={A˄B: A 

∈τ and B is a t--set}; 

Lemma 1.1: [1] Let (Y, τ, I) be a fits and A, B subsets of Y. The following properties hold:  

(a) If A ≤ B, then A* ≤ B*,  

(b) (A ˅ B)*= A* ˅ B*,  

(c) A* = Cl(A*) ≤ Cl(A),  

(d) if U ∈ τ, then U ˄ A* ≤ (U ˄ A)*,  

(e) if U ∈ τ, then U ˄ Cl*(A) ≤ Cl*(U ˄ A).  

Lemma 1.2.[11]. Let (Y, τ, I) be an ideal space, where I is codense, then the following hold: 

1. Cl(A) = Cl* (A), for every ∗− open set A;  

2. Int(A) = Int* (A), for every∗− closed set A. 

Note: Throughout this article, we use the following notation  

 Intr denotes Interior of a set. 

 Clr denotes Closure of a set. 

 Clr* denotes Kuratowski Operator 

 (Y, τ, ) denotes fuzzy ideal topological space(short, fits) 

FΑAB-SET, F∆ SET, F SET 

Definition 2.1. Let (Y, τ, ) be a fits. A fuzzy set P of Y is said to be 

 (1) A fuzzy α-set if P ∈ α (Y) ={U⋀ V: U is fuzzy α--open and V is fuzzy semi-- regular}. 

 (2) A fuzzy  -set if Clr*(Intr(P))=Y. 

Definition 2.2.A fuzzy set P of a space (Y, τ, ) is said to be 

1.A fuzzy semi* --open set, if P≤Clr(Intr* (P));A fuzzy semi* --closed set, if its complement is fuzzy semi*-

-open; 

2.A fuzzy - -set , if P∈(Y)={U ˅ V:U ∈ τ and V is a fuzzy α* --set}; 
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Remark 2.1  

Assume that (Y, τ, I) be a fits. 

(1) If P is fuzzy α--open set then P is a fuzzy α -set but the converse is not possible. 

(2) IfP is fuzzy semi--regular set then P is fuzzy α -set. But the reverse is not possible. 

Proposition 2.1.Let (Y,τ,) be a fits. If P isfuzzy α - set then P is fuzzy semi-  -open. 

Proof. Let P be a fuzzy α - set. Then P = U∧V where U∈FαO(Y) and V is a fuzzy semi- -regular set. By 

Proposition 1.1, V∈FSO(Y). If V is a fuzzy semi--open and P is a fuzzy α--open, then P=V∧U is a fuzzy semi-

-open. Therefore, P ∈FSO(Y). 

 Proposition 2.2. Let (Y, τ, ) be a fits and P < Y.  

(1) If P is fuzzy semi--regular then P is both fuzzy strong β--open and fuzzy semi* --closed.  

(2) If P is both fuzzy strong β--open and fuzzy semi* --closed then P is fuzzy semi- I-regular set. 

Theorem 2.1. Let P < Y be a fuzzy set of a fuzzy - submaximal space (Y, τ, ). Then the following are 

equivalent. 

(1) P is a fuzzy t--set. 

(2) P is a fuzzy semi*--closed set. 

(3) P is bothfuzzy α*--set andFα-set. 

Theorem 2.2. For a fuzzy set P < Y of a fuzzy  -sub maximal ideal topological space(Y, τ,), the following are 

equivalent. 

 (1) P is fuzzy semi--regular set. 

 (2) P is fuzzy semi*--closed set and a Fα-set.  

 (3) P is a Fα*--set and Fα -set. 

 Proof. 

 (1) ⇒(2): It is obvious. [Proposition 2.2]  

 (2) ⇒(3): It is obvious.[Theorem 2.1] 

 (3) ⇒(1): If P is a fuzzy α-set then P is both a fuzzy semi--open and a fuzzy α - set. Again, if P is a 

fuzzy α*--set and fuzzy α-  - set, then P is a fuzzy semi-- regular set. 

Definition 2.3. A fits (Y, τ, I) is said to be fuzzy I-extremely disconnected if Clr* (P) ∈τ for each P ∈τ. 

Theorem 2.3.Assume that (Y, τ,) be an * - extremely disconnected fits. Then FαO(Y) = Fα(Y), where 

FαO(Y) denotes the family of fuzzy α--open subsets of Y and Fα(Y) denotes family of fuzzy α sets.  

Proof.We know that, If P is fuzzy α--open set then P is Fα-set. Thus, FαO(Y) ≤ Fα(Y). Assume that 

P ∈ Fα(Y). Then P = U∧V where U∈FαO(Y) and V is a fuzzy semi--regular. Now V is fuzzy semi- -regular 

implies that V is a fuzzy t--set and also V∈ FSIO(Y). Hence Intr(V) = Intr(Clr*(V)) and V≤Clr*(Intr(V)) which 

implies that Intr(V) = Intr(Clr* (V)) and Clr* (V) = Clr* (Intr(V)). Since Y is * - Extremely disconnected, 

Intr(Clr*(Intr(V))) = Clr*(V). Thus, Intr(V) = Intr(Clr*(V)) = Intr(Clr*(Intr(V)))= Clr*(V) ≥V and so V ∈ τ(Y). We 

have U∈FαO(X) and V ∈ τ(Y). Thus, P = U∧V is fuzzy α--open. Hence Fα(Y) ≤ FαO(Y). Thus FαO(Y)= 

Fα(Y). 
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Definition 2.4.A fuzzy set P < Y of a fits (Y, τ,) is called aF-set if P = U∧V, where U ∈ τ(Y) and V is Fβ--

closed. The family of all F-sets of a fits(Y,τ,) will be denoted by F(Y). 

Theorem 2.4.Assume that P < Y be a fuzzy set of a fuzzy ideal space(Y,τ,). Then P∈F(Y) if and only if 

P=U∧ 𝐹β--Clr(P), U ∈ τ(Y). 

Proof. 

 (⇐):Assume that P=U∧β--Clr(A), U ∈ τ(Y). Since β--Clr(P) is fuzzy β--closed, P∈F(Y). 

(⇒): Assume that P∈F(Y). Then P=U∧V where U ∈ τ(Y) and V is fuzzy β-- closed. Since P ≤ V, Fβ--Clr(P) 

≤ 𝐹β--Clr(V) = V. Thus U ∧ 𝐹β--Clr(P) ≤ U∧V = P ≤U∧ 𝐹β--Clr(P) and hence P = U ∧ 𝐹β--Clr(P). 

Theorem 2.5.Let P < Y be a fuzzy set of a fits (Y,τ,). If P ∈F(Y),then 

 (1) Fβ--Clr(P)|P ∈ FβIC(Y) (short, fuzzy β--closed is FβIC(Y)). 

 (2) P ∨ (Y|Fβ--Clr(P)) ∈ FβIO(Y) (short, fuzzy β--Open is FβIO(Y)). 

 Proof. 

(1)Assume that P ∈F(Y). By Theorem 2.4, P=U∧Fβ--Clr(P) U ∈ τ(Y). Hence Fβ-- Clr(P)\P = Fβ--

Clr(P)\(U∧β--Clr(P)) = Fβ--Clr(P) ∧ (Y\(U∧Fβ--Clr(P))) = β--Clr(P) ∧ ((Y\U) ∨ (Y\Fβ- -Clr(P))) = (Fβ--Clr (P) ∧ 

(Y\U)) ∨ (Fβ--Clr(P) ∧ (Y\Fβ--Clr (P))) = (Fβ--Clr (P)∧ (Y\U))∨ ∅ = Fβ--Clr(P) ∧ (Y\U). Thus, Fβ--Clr(P)\P ∈ 

FβIC(Y). 

 (2)We know that Fβ--Clr(P)\P is fuzzy β--closed, Y\(Fβ--Clr(P)\P) is fuzzy β--open. Therefore Y\(Fβ -  - 

Clr(P)\P) = Y\ (Fβ--Clr(P) ∧ (Y\P)) = (Y\Fβ--Clr(P)) ∨ P. Therefore, P∨ (Y\Fβ--Clr(P)) ∈ FβO(Y)  

Fuzzy pre*- - open set, Fuzzy strongly pre*- - open set, FβI* open set. 

Definition 3.1. A fuzzy set P < Y of (Y, τ, ) is called fuzzy pre∗−– open (briefly FP∗O) set, if P < Intr* (Clr(P)). 

Definition 3.2. 

(a) A fuzzy set P < Y of (Y, τ,) is said to be a fuzzy strongly pre∗−−open set (briefly FS.P∗−−open set) if 

P < Intr∗ (Clr∗ (P)). We denote that all fuzzy S.P∗−−open set by FS.P∗O(Y). 

(b) A fuzzy set P < Y of (Y, τ, ) is said to be a fuzzy strongly semi∗−−open set (briefly FS.S∗−−open set) 

if P < Clr* (Intr* (P)). We denote that all fuzzy S.S∗−−open set by FS.S∗O(Y). 

Lemma 3.1. Let (Y, τ, ) be a fits. 

 1. If a fuzzy set P < Y is fuzzy pre −  − open set, then P is a fuzzy S.P∗−– open set. 

 2. If a fuzzy set P < Y is fuzzy S.P∗−− open set, then P is a fuzzy pre∗−– open set. 

Theorem 3.1.Let (Y, τ, ) be a fits. Then P is a fuzzy S.P∗−− open set if and only if there exists a fuzzy S.P∗−− 

open Q such that P < Q < Clr∗ (P). 

Proof. Assume that P < Y be a fuzzy S.P∗−– open set, then P < Intr∗ (Clr∗ (P)). We put Q = Intr∗ (Clr∗ (Q)), 

which is a fuzzy- ∗− open set. Therefore Q = Intr∗(Q) < Intr∗ (Clr∗ (Q)) be a fuzzy S.P∗−− open set such that P 

< Q = Intr∗ (Clr∗ (Q)) < Clr∗ (P). 

Conversely, Let Q ∈ FS.P∗O(Y). We have P < Q < Clr∗ (P), By taking fuzzy ∗− closure,Clr∗ (P) < Clr∗ (Q). 

Furthermore P< Q < Intr∗ (Clr∗ (Q)) < Intr∗ (Clr∗ (P)). Therefore P ∈ FS.P∗O(Y) 

Corollary 3.1.Suppose (Y, τ, ) be a fits, then P is a fuzzy S.P∗−− open set if and only if there exists a fuzzy 

open set P < Q < Clr∗ (P). 
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Corollary 3.2.Let (Y, τ, ) be a fits. If P is a fuzzy S.P∗−− open set, then Clr∗ (P) is afuzzyS.S∗−− open set. 

 Proof. Assume that P ∈ FS.P∗O(Y). Then P < Intr∗ (Clr∗ (P)) and Clr∗ (P) < Clr∗ (Intr∗ (Clr∗ (P))). Therefore 

Clr∗(P) ∈FS.S∗O(Y). 

 Corollary 3.3.Let (Y, τ, ) be a fits. If P is a fuzzy strongly semi∗−– open set, then Intr∗ (P) is a fuzzy S.P∗−− 

open set. 

Proof. Assume that P∈FS.S∗O(Y). Then P < Clr∗ (Intr∗ (P)) ⇒ Intr∗ (P) < Intr∗ (Clr∗ (Intr∗ (P))). Therefore, Intr∗ 

(P) ∈ FS.P∗O(Y). 

Theorem 3.2.Let (Y, τ, ) be a fits, P < Yand Q< Y.  

1. If P ∈FSP∗O(Y, τ,), for each α ∈∆, then ∨ {Pα: α ∈∆} ∈FSP∗O(Y, τ, )  

2. If P ∈FSP∗O(Y, τ, ), and Q ∈ τ, then P⋀Q ∈FSP∗O(Y, τ, ). 

Proof.(1)Since Pα∈FSP∗IO(Y, τ, ), we have Pα < Inrt∗ (Clr∗ (Pα)), for each α ∈∆. Then  

 ∨α∈∆Pα < ∪α∈∆Intr∗ (Clr∗ (Pα)) 

< Intr∗ (∪α∈∆ Clr∗ (Pα))  

= Intr∗ (∨α∈∆(P*
α∨Pα)) 

=Intr∗(∨ α∈∆P*
α∨ ∪ α∈∆Pα)  

< Intr∗((∨α∈∆Pα) ∗∨ ∪ α∈∆Pα)  

= Intr∗(Clr∗ (∨α∈∆Pα)) 

This shows that ∨α∈∆Pα∈FSP∗O(Y, τ, ). 

2) Assume that P∈FSP∗O(Y, τ, ) and Q ∈τ. Then P < Intr∗ (Clr∗ (P)) and Q = Intr(Q) < Intr∗ (Q). Thus, 

P⋀Q < Intr∗ (Clr∗ (P)) ⋀ Intr∗ (Q) = Intr∗ (Clr∗ (P) ⋀ Q) = Intr∗ ((P∗∨ P) ⋀ Q) = Intr∗ ((P∗⋀ Q) ∨ (P ⋀ Q)) < Intr∗ ((P 

⋀ Q)∗∨ (P ⋀ Q)) = Intr∗ (Clr∗ (P ⋀ Q)) 

Definition 3.3. A fuzzy set P < Y of a fuzzy fits (Y, τ, ) is called FβI
* open set if P <Clr(Intr∗ (Clr(P))). 

Definition 3.4. A fuzzy set P < Y of a fits(Y, τ, ) is called a fuzzy weakly semi −  – open set, if P < Clr* (Intr 

(Clr(P))); 

Theorem 3.3. Assume that (Y, τ, ) be a fits, where  is condense. Then the subset P < Y satisfies the 

following statements. 

 1. If P is fuzzy S.P∗−− open set then P is a fuzzy strong β−− open set. 

 2. If P is fuzzy S.P∗−− open set then P is a fuzzy β− open set.  

 3. If P is fuzzy S.P∗−− open set then P is a fuzzy weakly semi −  − open set. 

 4. If P is fuzzy S.P∗−− open set then P is a fuzzy weakly 𝛾 −  − open set. 

5. If P is fuzzy S.P∗−− open set then P is a fuzzy pre − open set. 

 Proof. It is obvious. 

Theorem 3.4.Let (Y, τ, ) be a fits. If every fuzzy open set is fuzzy ∗− closed, then every fuzzy strongly β −  − 

open set is fuzzy S.P* −– open set. 
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Proof. Assume that P ∈ FSβIO(Y). Then P < Clr* (Intr(Clr* (P))). Since Intr(Clr* (P)) ∈ τ, by hypothesis 

Intr(Clr* (P)) = Clr* (Intr(Clr* (P))). Therefore P < Clr* (Intr(Clr* (P))) = Intr(Clr* (P) < Intr* (Clr* (P)). Hence 

P∈FS.P*IO(Y). 

Theorem 3.5.Let (Y, τ, ) be a fits. Assume that P is fuzzy ∗− perfect. Then P satisfies the following 

statements.  

1. If P is fuzzy S.P* −− open set then P is almost fuzzy strong −– open set. 

2. P is a fuzzy S.P* −− open set if and only if it is fuzzy − open set.  

Proof.(1) Assume that P∈FS.P*IO(Y).Then P < Intr* (Clr* (P)) = Intr (Clr* (P)) < Clr* (Intr(Clr* (P))) = Clr* (Intr 

(P*)). This implies P is almost fuzzy strong −  – open set. 

 (2) Assume that P∈FS.S*IO(Y).Then P < Intr* (Clr* (P)) < Intr* (Clr(P)) = Intr(P*). Hence P ∈FIO(Y). 

Conversely, if P ∈FIO(Y), then P < Intr(P*) = Intr* (Clr* (P)). Hence P∈FS.P*IO(Y). 

Corollary 3.4. Let (Y, τ, ) be a fits. If P is fuzzy ∗−perfect, then every fuzzy pre* −− open set is fuzzy S.P* −– 

open set.  

Proof. Assume that P ∈FP*IO(Y). Since it is fuzzy ∗− perfect, then P < Intr* (Clr(P)) = Intr* (Clr* (P)). Hence 

P∈FS.P*IO(Y). 

Corollary 3.5. If P is fuzzy  − open set then P is fuzzy S.P* −– open set.  

Proof. If P ∈FIO(Y)., then P < Intr (P*) <Intr(P* ∨ P) < Intr* (Clr* (P)). Hence P∈FS.P*IO(Y). 

Theorem 3.6.Let (Y, τ, I) be a fits, Where  is codense. If P is fuzzy pre* −– open set then P is fuzzy S.P* −– 

open set 

Proof.It is obvious. 

Theorem 3.7.Let (Y, τ, ) be a fits and P < Y be a fuzzy pre – open set and fuzzy semi – closed set. Then P is 

fuzzy S.P* −– open set. 

Proof. If P is fuzzy pre−open set, then P< Intr(Clr(P)). Since P is fuzzy semi−closed set then Intr(Clr(P)) = 

Intr(P), then P < Intr(P) < Intr* (Clr* (P)). Hence P ∈ FS.P*IO(Y). 

Theorem 3.8.Let (Y, τ, I) be a fits. Let P < Y be a fuzzy S.P* −– open set and fuzzy- ∗ − closed set, then A is 

fuzzy S.S* −– open set. 

Proof. Let P is fuzzy S.P* −– open set, then P < Intr* (Clr* (P)). Since P is fuzzy ∗− closed set then Intr* (Clr* 

(P)) = Intr* (P). Now P < Intr* (P) < Clr* (Intr* (P)) Hence P∈FS.S*IO(Y). 

Theorem 3.9.Let (Y, τ, ) be a fits. Let P be fuzzy Pre* −– open set and fuzzy closed set. Then P is a fuzzy 

S.P* −− open set  

Proof. Let P∈FP*IO(Y). Then P <Intr* (Clr(P)). Since P is fuzzy closed set, then P < Intr* (Clr(P)) = Intr* (P) < 

Intr* (Clr* (P)). Therefore P∈FS.P*IO(Y). 

Theorem 3.10. Let (Y, τ, I) be a fuzzy  − extremely disconnected space and A < Y. If P is fuzzy semi −  − 

open set then P is a fuzzy S.P* −− open set. 

Proof. Let P be a fuzzy semi −  – open set, then P<Clr* (Intr(P)). By Lemma 1.3, we obtain P <Intr(Clr* (P)) < 

Intr* (Clr* (P)). Hence P∈FS.P*IO(Y). 
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Lemma 3.2. A fits (Y, τ, I) is fuzzy  − extremely disconnected set if and only if Clr* (Intr* (P)) < Intr* (Clr* 

(P)), for every fuzzy set P of Y.  

Proof.By Def 2.3., we obtain Clr* (P) ∈ τ. Thus Clr* (Intr* (P)) < Clr* (P) = Intr(Clr* (P)) < Intr* (Clr* (P)). Thus 

Clr* (Intr* (P)) < Intr* (Clr* (P)).  

Conversely, since Clr* (Intr(P)) < Clr* (Intr* (P)) < Intr* (Clr* (P)) < Intr* (Clr(P)). Then Y is fuzzy  − extremely 

disconnected set. 

Corollary 3.6. Let (Y, τ, ) be a fuzzy - − extremely disconnected space and A < Y. If P is fuzzy strongly semi* 

−− open set then P is fuzzy S.P* −– open set. 

Proof. It is obvious by Lemma 3.2. 

Theorem 3.11.Let (Y, τ, ) be a fits, P < Y and Q < Y. If P is a fuzzy S.P* −− open set and Q is a fuzzy pre − 

open set, then P ∨ Q is fuzzy pre* −– open set. 

 Proof. Assume that P∈FS.P*IO(Y).We have P < Intr* (Clr* (P)), and Q ∈ FPO(Y) then Q < Intr(Clr(Q)). Now:  

P ∨ Q < Intr* (Clr* (P)) ∨ Intr(Clr (Q)) < Intr* (Clr(P)) ∨ Intr* (Clr(Q)) < Intr* (Clr(P ∨ Q)). 

 Hence P ∨ Q ∈ FP*IO(Y). 

Theorem 3.12.Let (Y, τ, ) be a fits, P < Y and Q < Y. If P is a fuzzy S.P* −− open set and Q is a weakly fuzzy 

semi −− open set, then P ∨ Q is fuzzy βI
* open set. 

Proof. Assume that P ∈ FS.P*O(Y). Then P < Intr* (Clr* (P)), P is weakly fuzzy semi − I − open and Q < Clr* 

(Intr(Clr (Q))) We have 

P ∨ Q < Intr* (Clr* (P)) ∨ Clr* (Intr(Clr(Q))) 

< Clr (Intr* (Clr (P))) ∨ Clr( Intr* (Clr (Q))) 

= Clr (Intr* (Clr (P)) ∨ Intr* (Clr(Q))) 

<Clr(Intr* (Clr(P ∨ Q))). 

 Thus P ∨ Q ∈ FβI
*O(Y) 

Theorem 3.13.Let (Y, τ, ) be a fits, where  is codense then P is fuzzy α − −open set if and only if it is a fuzzy 

S.S* −– open set and fuzzy S.P* −– open set. 

Proof. Necessity, this is obvious.  

 Conversely, Let P is a fuzzy S.S* −– open set and FSP*(Y), we have:  

 P < Intr* (Clr* (P))<Intr* (Clr* (Clr* (Intr* (P))))= Intr* (Clr* (Intr* (P))) = Intr(Clr* (Intr(P))).  

Hence P ∈ FαO(Y). 

Theorem 3.14. Let (Y, τ, ) be a fits. Then P < Y satisfies the following statements.  

1. If P is a fuzzy S.P* −− open set, then SIClr(P) = Intr* (Clr(P)).  

2. If P is a fuzzy S.P* −− closed set, then SIntr(P) = Clr* (Intr(P)). 

Proof.(1) Let P be a fuzzy S.P* −− open set in Y. Then we have P < Intr* (Clr* (P)) < Intr* (Clr(P)). Thus we 

have SIClr(P) = Intr* (Clr(P)). 
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 (2) Let P be a fuzzy S.P* −− closed set in Y, then we have P > Clr* (Intr* (P)) > Clr* (Intr(P)). Hence SIntr(P) = 

Clr* (Intr(P)). 

Theorem 3.15. Let (Y, τ, ) be a fits, then each fuzzy pre −  − regular set in Y is fuzzy S.P* − I – open set and 

fuzzy S.P* −− closed set. 

Proof. We know that every fuzzy pre− −regular set is fuzzy pre− −open set and fuzzy pre− −closed set. 

Therefore, it is fuzzy S.P* −− open set and fuzzy S.P* −– closed set. 

Remark 3.1.The following diagram holds for any fuzzy set P < Y of a fits (Y, τ, ). 

 

Decomposition of Fα--open set,Fα -set and Fβ--closed set 

Definition 4.1. A fuzzy set P of a fits (Y, τ, )is said to be 

(a) Fgβ--closed set if Fβ- -Clr(P)≤ M whenever P ≤M and M is fuzzy open set in Y. 

(b) Fgβ -  - openif Y\P isFgβ--closed set. 

Theorem 4.1. Let G be a fuzzy set of (Y, τ,). Then the following are equivalent:  

(1) G is a fuzzy α--open set.  

(2) G is a fuzzy pre--open set and a Fα- -set.  

Proof. 

(1) ⇒(2): It is obvious. 

(2) ⇒(1): Since G is fuzzy pre--open set and it is Fα- -set. By Proposition 2.1, G is a fuzzy semi-- open 

set. Now G ∈ FSIO(Y) and G ∈ FPIO(Y). Therefore G ∈ Fα IO(Y). 

Theorem 4.2. Let G be a fuzzy set of (Y, τ,). Then the following are equivalent:  

(1) G is a Fα -set. 

(2) G=A∧B where A is a F- -set and B is a F - set. 

Proof. 

 1 (⇒) 2: Let G be a fuzzy α -set. Thus G = C ∧ D where C ∈FαO(Y) and D is fuzzy semi--regular set. 

From Lemma 1.4, we have C = E∧F where E∈ τ and F∈F(Y). Moreover, we have G= C∧D =E∧F∧D 

=(E∧D)∧F such that A= E∧D is a fuzzy  - -set and B is a F -set. 
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1(⇐)2: Let G=A∧B where A is a fuzzy -  - set and B is a F -set. Since A is a fuzzy -  -set, there exist 

a fuzzy open set U and a fuzzy semi--regular set V such that A = U∧V. We have G=A∧B=U∧V∧B=(U∧B) ∧V 

where U∧B is, by Lemma 1.4, a fuzzy α-- open set. Thus, G is a Fα -set. 

Theorem 4.3. Assume that(Y, τ,) be a fits. Then P < Y satisfies the following statements. 

(1) P is fuzzy β--closed set,  

(2) P is a F-set and Fgβ--closed set.  

Proof. 

 (1)⇒(2):It is obvious.  

 (2) ⇒(1): Let P be a F-set. Then we have P=U ∧ Fβ--Clr(G), U ∈ τ in Y. We have P ≤ U. Since P is Fgβ--

closed set, then Fβ--Clr(P) ≤U. Hence Fβ--Clr(P) ≤ U ∧ Fβ- -Clr(P) = P. Hence P ∈ FβC(Y). 
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