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Abstract

We prove some fixed point theorem on integral-type inequality in the setting of multiplicative metric in order to find the

existence and uniqueness of the some fixed point.
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1. Introduction

In the domain of mathematics, science and engineering, fixed point theorem plays a significant role.
The scientific basics of the fixed point theory was established in the 20" century. In 1922, Stephan
Banach established the theorem called “Banach fixed point theorem“based on finding the existence
of solution for integral and non-linear equation. The fixed point theory for multivalued operators in
metric space has been used in many works published in specially literature. The fixed point of certain
important single-valued mapping also plays an important role, as their result can be applied in

engineering, physics, economics and in telecommunication.

The first constructive method of calculating the fixed point of a continuous function was presented

by H scarf in the year 1973.

Multiplicative metric space was first introduced by Bashirov at all in 2008 among various thing,
started a new kind of spaces. The main purpose to replace usual triangular inequality by a “
Multiplicative triangle inequality”. By using the concept of multiplicative absolute value and
multiplicative distance ozavsar and cevikel introduced multiplicative metric space observed its
topological properties and defined some fixed point theorem for multiplicative contraction mapping

using multiplicative space.
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In 1986, Jungck introduced a lot referred to as compatible mapping that are more general of
commuting and weakly commuting maps. Common fixed point theorems for two pairs of weakly
compatible mapping distribution metric space have recently introduced by K. Jhaet.al and K. Jha and
D. Panthi.

Recently Branciari finds a fixed point result for a single mapping fulfiling an correlation principle for

an integral type inequality. In this consideration, we initiate some fixed points theorem in

multiplicative metric space using integral type implied relation with integral-type inequality.

2. Preliminaries

2. Multiplicative Metric spaces

Definition 2.1:

Let Y be a nonempty set. A multiplicative metric is mapping V: Y X Y — R satisfying the following
conditions:

1) V(w,v) = 1forallw,v € Yand V(w,v) = 1lifand only if w = v;

2) V(w,v) =V (v,w)forallw,veEY

3) V(w,v) <V (w,1).V(tv)forallw,v,t € Y (multiplicativetriangleinequality)

Theorem 2.2:
Let R, R,, R, R, be Self-quadruple mapping of an multiplicative metric space
(Y,V), satisfying the following conditions:
a) (R, R3)and Ry, R,) satisfy (CLRy_ %, ) property
b) (R, R3) and (R,, R,) are weakly compatible.
c) R, Ry, Rs, R, satisfy the inequality

Lgn@ At R0
r]<f0“ V(t)dt)
@ (M) ¢, (N, W)
< LW, j y(Ddt | W, j v(Ddt
0 0

ForA",u €Y, n € (0,1), where
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¢, (MQA", W)

( V(ER]_)\*,ERLl,u),V(iRzu, §R4u),V(§R4u, §R3)\*), 1 "
. VRN, RV(RA, RAT) V(Rou, ReAIV(RAT, Ryu),
= amax 2 14+ V(Ryu, RN

V(R AT, Ryw) V(RN Ryu)
1+ V(RN Ra))

0, (N, W)
V(R RyWV(RA, Ryu)

= (p2 (V(ER]_)\*, 934u), V(mzu, 9{4[1), V(m4um3)\*), 1 + V(ERZ}\* 9{3)\*) )

Then, the self-quadruple mappings R4, R,, R3, R, have a unique common fixed point u€e

Y.

Corollary 2.3:

Let Ry, R,,R3, R, be self-quadruple mappings of an multiplicative metric space (Y,V), Satisfying

the following condition:
(a) (R1,R3) and (R,,R,) satisfy (CLR,x,) property.
(b) (R1,R3) and (R,,R,) are weakly compatible.

(c)R41,R,,R3,and R, Satisfy the inequality

ﬁV“(ERl)\*,ERZy)

" Of v(t)dtétbl(fo

o,(a"y))

VOt b, ( f y(®dt)
0

o, (p"))

ForA*,y €Y, ue(0,1), where

V(RN Rey)VRA RN VM
2 )

V(§R17\*, R4y), V(R2y, Ray), V(Ryy, iRs)\*)'

o, (PAV",y)) = pnax V(R RNV R Hpy) VRN Rey) VR Ryy) ’
1+(iRzy,iRl)\*) ’ 1+(€Rz)\*,iﬁ3}\*) ’
* * 1y VRN R)V(RN R,y)
0, (Q\",y) = 0, (VRN Ray), V(Ray, Ray), V(Ray, Rah), —— 5=
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Then, the self-quadruple mappings R;,R,,R3, R4 have a unique common fixed point

yey.
By considering R, = R, and R3(t) = R,4(t) = tin theorem, we have the following result.

Corollary 2.4:
Let R, be a self-mapping of an multiplicative metric space (Y,V), satisfying the following integral

condition

Lgug At R,y)
¥ ?, (qO\*,y))
nC [ vwdee ooy
0
0

v@@%q v(®do)
0

wl(p(h*,y))

For\",y €Y, u e (0,1), where

* oy VRN PIVRAAD M
V(R Y), V( Ry, y), V), ==,

* _ 1
¢, (PO, y)) = Lmax VRYAIWRN Ryy) VRAYIVA ) '
1+(R,y, R\ 71+ (RN

1+ Ry, \H)

0,(Q\"Y)) = @, (VRN ), V(R1y,y), V(y,\")

Then, R 1 has a unique common fixed point y €Y.

3. SOME FIXED POINT THEOREM WITH INTEGRAL-TYPE
INEQUALITY ON MULTIPLICATIVE METRIC SPACE

Theorem 3.1:

Let R,,R,,R3, R, be self-quadruple mappings of an multiplicative metric space (Y,V), Satisfying

the following condition:

(a) (R1,R3) and (R,,R,) satisfy (CLRy,x,) property.
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(b) (R1,R3) and (R,,R,) are weakly compatible.

(c)R1,R,,R3,and R, Satisfy the inequality

( ﬁvu(mlx*mzy) \
. f vdo | 2Ly,
0

@1(13(7\*,}’)) @, (q()\*,y))
( f v(t)dt)) 0, ( f v(t)dt)>
0 0

(2.1)

For\",y €Y, u € (0,1), where

o, (P, y))

V(R Ry VRN, RA)

L [T Ry, T BRay Ry, YRy, R, _
- ‘ma"i V(3,y, RA V(RN Roy) f
1+ (mzy, 9%1?\*)

©,(Q\,Y)) = 9, (VRN Ray), V(Ray, Ray), V(Ray, R3)))
Then, the self-quadruple mappings R{,R,,R3, Ryhave a unique common fixed pointy e Y.

Proof:

By the help of our supposition of the (CLRg,%,) property of the pairs

(R1,R,), and (R3, R,), we assume two sequence {A,} and {y,} in multiplicative metric space (Y,V)

such that

lim R, (Ay) = lim R3(A) = lim R, y, = lim R, y,=w, (2.2)
n—-oo n—ooo n—ooo n—ooo

forwe R3(Y) N R,L(Y)
lim R, (Ay) = lim R () = lim R, y, = lim Ry, =w= Ryv (2.3)
n—-oo n—ooo n—ooe n—ooo

We show that R, v =R;v.

For this, we follow by the contradiction, that is,’R, v # R;v and define the following sequence:

Yan =Ri(A,) = ReMonsiand
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Yon+1 = sz\Znﬂ) = ER30\%2<n+2)

by the help of (2.1), we have
SVHR, v, Ryyn)
n(fo“ v(©dt) ) LLy,

(J‘O(Pl(p(vn}’n)) V(t)dt)) LIJZ (fo(Pz(q(V,Yn)) V(t)dt))(24)
For\" =vandy =y, inthe equality (2.4), where

V(R1VRYn)V(R 1V R3v) \ M
1 V(R1v, Rayn), VIR2Yn Rayn), V(Rayn, R3v), L 4y2 el )
@, (P(V‘ Yn)) = Hmax V(R2ynR3vIV(R1v,Royn)

1+((RaynR1v))

(2.5)

(9,(QV.y0)) = @, (V(R1v, Ryyn), V(Rzyn, Rayn), V(Rayn, R3v))

(2.6)

Taking thelimin (2.5), (2.6) and (2.4), respectively, we get
n—eo

. 1..
lim @, (P(v,yn)) = = lim max

VRV Ry V(R vR3v) \H
2 )

V(mlvl SRAI-YH)' V(mZYH' 9:{ll-yn)' V(ER4YH' 9:{3‘/)'
VR2yn,R3VIVR1v,Royn)
1+((RoynR1v))

V(R vWV(Rvy) \H
2 )

V(R v, w), V(w,w), V(w,w),

T W WV v w) (2.7)
1+((ReynR1V))
-1 max {V(iﬂlv, w), L1, V(Ryv, w), 1}“
U
= ﬁV“ (Riv,w)
Ai_l)g(pz (Q(V' Yn)) = gi_rf}o(pZ (V(mlv: ER4-Yn): V(mZYH: 9T{ALYH): V(mzl-YH: 9f{3v))
=@, (V(Rv, w), V(w,w), V(w,w)) (2.8)

= (pz (V(mlvl W)l 1 11)
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=1, and
( LgR, v Raym) w
fimr ¢ £,
\ ! /
(fowl(p(v,yn)) y(t)dt) IP_)IEO lbz (fowz(q((v,yn))) y(t)dt)>(2.9)
. lV“L(%lv,w) . 1
=Llim, <f0“ v(©dt) lim LIJZ(IO v(t)dt>

by the use of (2.3), (2.7), and (2.8) in (2.9), we have

ﬁv“(mlv,w) ﬁV“(‘;Rlv,w)
0| [ vwdo |ew | [ vow
0 0

Which is a contradiction of n(t) > y, (t). This contradiction is due to our supposition R;v # R3v,
and hence R, v = R3v. Also from (2.2), we have w € R, (Y). This implies w = R, (u), for some

uey.

Now, we show that R,(u) = R, (u), for this we assume the contrary path, that is R, (u) # R, (u).
By putting A" = A}, and w=u in (2.4), and following the same lines as above for proof of

Ryv =R,v=w,wecangetR,(u) = R,(u) =y.

Consequently, we have
Ria(W) =R,(0) =R3v=R,v=w
Since, (R1,R,) and (R3,R,) are weakly compatible. Therefore, Ryv = R,v implies R, R;v =

Rz R, v which implies R, w = Ryw.

Similarly, we have R,w = R,w. Next, we show that w is a common fixed point of R, R,, R;, R,.

For this, let assume that R;w # w, and putting\* = wand y = uin (2.4) we have
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0

2UH(R, W,R, (1))
( g ) @, (p(w,u)) cpz(q((w,u)))
| [ vod |z, ( | v(t)dt)) 5, ( | v(t)dt)>
\ / 0 0

where,
(V(Ryw, Ry (W), V( Ry (0), Ry (), V(Ry(w), Ryw),)
1 V(RwW,R(0W)V(RLW,R3w)
¢, (P(w, u)) = max 2 ’
V(R (W), RzW)V(R1w, R, (0)
1+((R2(w), Ry w))

V(mlwl W)I V(WI W); V(W; E):{3W); :

1 VR1wW,wW)V(R{w,Rzw)
=—Mmax 2 ’
K V(w,R3w)V(R{w,w))

1+((Rz (W), RW))
1
=; V“(ﬁ)?lw, w),
and

@Z(Q(W’ u)) = @,(V(Rw, R (1)), V(R2 (u), Ra(u)), V(R4 (u), Ryw))
= ¢, (V(Ryw, w)), V(w, w), V(w, R;w))
= ¢, (V(R,w,w), 1, V(w, R;w))
=1

by the use of (2.3), (2.7) and (2.8) in (2.9), we have
(%V“QTHW,W) w (ﬁv“(%lw,w) \
0| [ vede Jew | [ vowm
\ © )

For u € (0,1) which is a contradiction of n(t) > U, (t). This contradiction is due to our supposition
that Riw # w, and hence R;w = Ryw = w. Similarly, we can show R,w = R,w = w.

Ultimately, we have R;w = Ryw = R,w = Raw = w.
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Finally, we have that the common fixed point of the self-quadruple mapping R, R, R3, R, is
unique. For this, we again presume a contrary path, that is, let there exist two different fixed points
such that

Riw; = Rawy = wy, Rywy = Rowy = wy,

For some wy, W, € Y such that w; # w,. By putting A" = wyand y = w,, in (2.4), we have

( lvu(gﬁwpmzwz)
n H

Je v(t)dt)> =n < f(fv(wl'WZ)v(t)dt)> (2.10)

21 (P(WLWz))
< ny, <f v(t)dt>
0

®, (Q(WI'WZ))
o, ( fo v(t)dt)>.

Where
V(R 1wy, Rawy), V(Rwo, Rawy), V(R4wy, Rywy ), :
1 VR w,Raw)VR Wy Rywy)
(pl(P(wl,wz)) = —max 2 ’ (2.11)
" V(Rowo,Rzw V(R Wy, Rowy)
1+((Ro w2, R wy)) )

V(WIJ Wl)' V(WZJ WZ)' V(WZ' Wl)! "
1 V(wq,w5)V(wq,wyq)
=-max 2 ’
" V(wy,w)V(wy,wy)
1+((wz,wq))

1
=; VH(wq, wy),

and
P, (Q(Wp Wz)) =0, (V(R1wy, Rawy), V(Rwy, Raw,), V(R,wo, Rawy))

= @, (V(wy, wy), V(wy, wy), V(wy, wy)) (2.12)

= (pz (V(Wlt WZ)) 1: V(WZI Wl))

=1

By the use of (2.11), (2.12) in (2.10), we have
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Lgutw,,wy) Lyntw,,wy)
n(fou W1, W v(t)dt>é¢1 <f0“ W1, W v(t)dt>,

Which is a contradiction of the fact n(t) > {,. Thus w; = w; and therefore the common fixed
point of the self-quadruple mappings. R, R,, Rz, R, is unique.

If we assume that @, (t) = %, we have the following corollary.

Corollary 3.2:

Let R1,R,,R3,R, be self-quadruple mappings of an multiplicative metric space (Y,V), Satisfying the

following condition:
(a) (R1,R3) and (Ry,R,) satisfy (CLRk,x,) property.
(b) (R1,R3) and (R,,R,) are weakly compatible.

(c)R1,R,,R3,and R, Satisfy the inequality

iv“(il%l}\*,iﬁzy)

o, (P"y)) 0, (a"y)
" Of V(®dt éwl(jo v(t)dt)npz(fo v(t)dt>

for A",y €Y, ne(0,1), where

* wy VRN RVRA RN VB
VR, Rey), V(Rzy, Ray), V( Sy, Rgh), AT AL

* _ 1
0, (POV,y)) = Lmax V(R,y, RN IV(RA Ryy) '
1+(§R2y,§R1)\*) !

®, (QO\*: Y)) =0, (VR Ray), V(R2y, Ray), V(Ray, R3\)
Then, the self-quadruple mappings R{,R,,R3, R4 have a unique common fixed pointy € Y
By considering®R; = R, and R3(t) = R,.(t) = tin theorem, we have the following result.
Corollary 3.3:

Let R, be a self-mapping of an multiplicative metric space (Y,V), satisfying the following integral

condition
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Lgug, At R,y)
{ " \ b1 (P00 ) b2(a"y)
|| vwde |2z ( | v(t)dt> 0, ( | v(t)dt>
\ ; / 0 0

For\",y €Y, u € (0,1), where

* wy VRN DVRAAD P
V(R ), V( Ry, y), VA, 5,

X 1
¢ (P, y)) = max V(R yAIV(RN Ryy) '
1+(§R1y,§R1}\*)

(I)Z (QO\*, Y)) = q)z (V(ml)\*' Y)' v(mly' Y)' V(y' 7\*)

Then,R, has a uniqgue common fixed pointy €Y.
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