Common Fixed Point Theorems On D* Metric Spaces

Ms. S. Jone Jayashree ${ }^{1}$, Dr. J. Beny ${ }^{2}$, Ms. P. Sagaya Leeli ${ }^{3}$
1, 2, 3 - Assistant Professor, PG and Research Department of Mathematics, Holy Cross College(Autonomous), Tiruchirappalli-620002. Mail Id: jonejayashreeg@gmail.com

Abstract

In this paper we have proved some fixed and common fixed point theorems in D metric spaces and extended it to prove the existence of a common fixed point onD*METRIC SPACES.

Keywords: Common fixed points, Metric Spaces, Self mapping,D*Metric Spaces.

Mathematics subject classification: Primary 47H10; Secondary 54H25

1. INTRODUCTION

In the $20^{\text {th }}$ century, the theoretical foundation of fixed point analysis was postulated. The Banach fixed point theorem is a useful method in metric space theory. Stefan Banach (1892-1945), the developer of functional analysis, developed and presented the theorem in 1922, beginning with the multivalued variant of the BanachCaccioppoli contradiction theory demonstrated by S.B Nadler Jr in 1969. H Scarf proposed the first constructive method of calculating the fixed point of a continuous function in 1973. The fixed points of some relevant single valued mappings are also important because their findings can be applied in architecture, physics, computer science, economics, and telecom. Motivated by this fundamental theory, we initiate some common fixed points theorems on the most happening field of D^{*} metric spaces.

2. PRELIMINARIES

2.1 BASIC DEFINITIONS

Definition 2.1.1

Let S be any set. A metric for S is a function ' f ' with domain $S \times S$ and range contained in $[0, \infty)$ such that

1. $\rho(p, p)=0 \quad(p \in S)$
2. $\rho(\mathrm{p}, \mathrm{q})>0 \quad(\mathrm{p}, \mathrm{q} \in \mathrm{S}, \mathrm{p} \neq \mathrm{q})$
3. $\rho(p, q)=\rho(q, p) \quad(p, q \in S)$
4. $\rho(p, q) \leq \rho(p, r)+\rho(r, q)(p, q, r \in S)$ (Triangle Inequality)

Definition 2.1.2

If there exists $a \in X$ such that $S a=T a=y$, then a is called a coincidence point of S and T, while b is called a point of coincidence of T and S. If $\mathrm{Sa}=\mathrm{Ta}=\mathrm{a}$, then a is called a Common Fixed Point of S and T.

Definition 2.1.3

Let X be a non-empty set. A generalized metric (orD* metric) on X is a function $D^{*}: X^{3} \rightarrow[0, \infty$) that satisfies the following conditions for each $a, b, c, u \in X$.
i. $\quad D^{*}(a, b, c) \geq 0$
ii. $\quad D^{*}(a, b, c)=0$ iff $a=b=c$
iii. $\quad D^{*}(a, b, c)=D^{*}(P\{a, b, c\}),($ Symmetry $) P$ is a permutation function.
iv. $D^{*}(a, b, c) \leq D^{*}(a, b, u)+D^{*}(u, c, c)$

The pair ($\mathrm{X}, \mathrm{D}^{*}$) is called generalized metric (or D^{*} metric) space.

Definition 2.1.4

Let $\left(X, D^{*}\right)$ be a D^{*} - metric space. D^{*} is said to be continuous function on X^{3} if $\lim _{n \rightarrow \infty} D^{*}\left(a_{n}, b_{n}, c_{n}\right)=$ $D^{*}(a, b, c)$ Whenever a sequence $\left\{\left(a_{n}, b_{n}, c_{n}\right)\right\}$ in X^{3} converges to a point $(a, b, c) \in X^{3}$, that is
$\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b, \lim _{n \rightarrow \infty} c_{n}=c$.

Definition 2.1.5

Let $\left(X, d_{X}\right)$ and $\left(Y, d_{Y}\right)$ be metric spaces. A function $f: X \rightarrow Y$ is continuous at
$u \in X$ if for every $\epsilon>0$ there exists $\delta>0$ such that $d_{X}(a, u)<\delta$ implies that

$$
d_{\mathrm{Y}}(\mathrm{f}(\mathrm{a}), \mathrm{f}(\mathrm{u}))<\epsilon .
$$

Definition 2.1.6

Let X be a nonempty set. A generalized metric (or D^{*}-metric) on X is a function, $\mathrm{D}^{*}: \mathrm{X}^{3} \rightarrow$ $[0, \infty)$, satisfies the following conditions for each $a, b, c, u \in X$:

1) $D^{*}(a, b, c) \geq 0$,
2) $D^{*}(a, b, c)=0$ if and only if $a=b=c$,
3) $D^{*}(a, b, c)=D^{*}(p\{a, b, c\}),($ symmetry $)$ where p is a permutation function,
4) $\quad D^{*}(a, b, c) \leq D^{*}(a, b, c)+D^{*}(u, c, c)$.

The pair ($\mathrm{X}, \mathrm{D}^{*}$) is called a generalized metric (or D^{*}-metric) space.

Example 2.1.6.1

a) $\quad D^{*}(a, b, c)=\max \{d(a, b), d(b, c), d(c, a)\}$,
b) $\quad D^{*}(a, b, c)=d(x, y)+d(y, z)+d(z, x)$.Here, d is the ordinary metric on X.
c) If $X=\mathbb{R}^{n}$ then we define $D^{*}(a, b, c)=\left(\|a-b\|^{P}+\|b-c\|^{P}+\|c-a\|^{P}\right)^{\frac{1}{p}}$ for every $\mathrm{p} \in \mathbb{R}^{+}$.
d) If $X=\mathbb{R}$, then we define

$$
D^{*}(a, b, c)=\left\{\begin{array}{cc}
0 & \text { if } a=b=c \\
\max \{a, b, c\} & \text { otherwise }
\end{array}\right\}
$$

DEFINITION 2.1.7:

Let $\left(X, D^{*}\right)$ be a D^{*}-metric space. D^{*} is said to be a continuous function on X^{3} if $\lim _{n \rightarrow \infty} D^{*}\left(a_{n}, b_{n}, c_{n}\right)=$ $D^{*}(a, b, c)$ Whenever a sequence $\left\{\left(a_{n}, b_{n}, z_{n}\right)\right\}$ in X^{3} converges to a point $(a, b, c) \in X^{3}$, that is

$$
\lim _{n \rightarrow \infty} a_{n}=a, \lim _{n \rightarrow \infty} b_{n}=b, \lim _{n \rightarrow \infty} c_{n}=c
$$

DEFINITION 2.1.8:

In D^{*}-metric space ($\mathrm{X}, \mathrm{D}^{*}$), P and R be two mappings into itself.
Then $\{A, S\}$ is said to be weakly commuting pair if

$$
D^{*}(A S x, S A x, S A x) \leq D^{*}(A x, S x, S x)
$$

For all $\mathrm{a} \in \mathrm{X}$. Clearly a commuting pair is weakly commuting.

2.2 SOME FIXED AND COMMON FIXED POINT THEOREMS IN METRIC SPACESFOR TWO SELF MAPPINGS

Let (X, d) be a metric space and $T_{i}(i=1,2)$ be self mappings of X.The purpose of this chapter is to investigate the fixed and common fixed points of T_{i}, when the pair $_{\mathrm{i}}(\mathrm{i}=1,2)$ satisfies a condition of the following type:

$$
\begin{equation*}
d\left(Q_{1} a, Q_{2} b\right) \leq r\left(d\left(a, Q_{1} a\right), d\left(b, Q_{2} b\right) d(a, b)\right) \quad \forall a, b \in X \tag{2.1}
\end{equation*}
$$

Where Υ is some real valued function defined on a subset ofR $\times R \times R$

Throughout this chapter, (X, d) is a complete metric space, Q is the closure of the $\operatorname{set}\{d(a, b): a, b \in X\}$ and $P=Q \times Q \times Q . A$ function $\quad Y: G \rightarrow R^{+}$(non-negative reals) is right continuous iff $\left(\mathrm{u}_{\mathrm{n} 1}, \mathrm{u}_{\mathrm{n} 2}, \mathrm{u}_{\mathrm{n} 3}\right),\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right) \in G$ and $\mathrm{u}_{\mathrm{nk}} \downarrow \mathrm{u}_{\mathrm{k}}, \mathrm{k}=1,2,3$ ($\downarrow=$ decreasing), then

$$
\Psi\left(\mathrm{u}_{\mathrm{n} 1}, \mathrm{u}_{\mathrm{n} 2}, \mathrm{u}_{\mathrm{n} 3}\right) \rightarrow \Psi\left(\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}\right)
$$

The function Υ will be called symmetric iff $\Upsilon(u, v, w)=\Upsilon(u, v, w)$ for all $(u, v, w) \in G$. Further, the mappings $Q_{i}(i=1,2)$ satisfy a $\left.I_{1}, I_{2}, \Upsilon, k\right)$ functional inequality iff for each $\mathrm{i}(\mathrm{i}=1,2)$, there is a mapping $\mathrm{I}_{\mathrm{i}}: \mathrm{Q}_{\mathrm{i}} \times \mathrm{X} \rightarrow \mathrm{I}^{+}$(positive integers) such that if $\mathrm{n}(\mathrm{a})=\mathrm{I}_{1}\left(\mathrm{~T}_{1}, \mathrm{a}\right)$, then
$d\left(Q_{1}^{n(x)} x, Q_{2}^{m(y)} y\right) \leq k \Upsilon\left(d\left(x, Q_{1}^{n(a)} a\right), d\left(b, T_{2}^{m(b)} y\right), d(a, b)\right)$,

For all $a, b \in X$, where k is a some real constant, and $Y: G \rightarrow R^{+}$is a symmetric rightcontinuous function. If (2.2) holds for $k=1$, then $\left(I_{1}, I_{2}, \Upsilon\right)$ will denote $\left(I_{1}, I_{2}, \Upsilon, 1\right)$.

Theorem 2.2.1

Considering the mapping $Q_{i}: X \rightarrow X(i=1,2)$, satisfy a $\left(I_{1}, I_{2}, \Upsilon, k\right)$ functional inequality for some $\mathrm{k}<1$.

If (i) $\Psi(u, v, w) \leq \max \{u, v\},(u, v, u) \in G$, then there exists a $\eta \in X$ such that

$$
\begin{equation*}
\mathrm{Q}_{1}^{\mathrm{n}(\eta)}=\mathrm{Q}_{2}^{\mathrm{m}(\eta)} \eta=\eta . \tag{2.3}
\end{equation*}
$$

If (ii) $\Upsilon(0,0, u) \leq u$ for each $u \in \mathbb{Q}$, then η is unique satisfying (2.3)

Proof

Suppose $a_{0} \in X$ and let $a_{1}=Q_{1}^{n\left(a_{0}\right)} a_{0}, a_{2}=Q_{2}^{m\left(a_{1}\right)} a_{1}$, and inductively

$$
\mathrm{a}_{2 \mathrm{n}}=\mathrm{Q}_{2}^{\mathrm{m}\left(\mathrm{a}_{2 \mathrm{n}-1}\right)} \mathrm{a}_{2 \mathrm{n}-1}, \mathrm{a}_{2 \mathrm{n}+1}=\mathrm{T}_{1}^{\mathrm{n}\left(\mathrm{a}_{2 \mathrm{n}}\right)} \mathrm{a}_{2 \mathrm{n}}
$$

Then, $\quad d\left(a_{2 n}, a_{2 n+1}\right) \leq k r\left(d\left(a_{2 n-1}, a_{2 n}\right),\left(a_{2 n}, a_{2 n+1}\right), d\left(a_{2 n-1}, a_{2 n}\right)\right)$.

Since $\mathrm{k}<1$, it from by (i) we have

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{a}_{2 \mathrm{n}}, \mathrm{a}_{2 \mathrm{n}+1}\right) \leq \mathrm{kd}\left(\left(\mathrm{a}_{2 \mathrm{n}-1}, \mathrm{a}_{2 \mathrm{n}}\right)\right. \tag{2.4}
\end{equation*}
$$

In a similar manner

$$
\begin{equation*}
d\left(a_{2 n-1}, a_{2 n}\right) \leq k d\left(a_{2 n-2}, a_{2 n-1}\right) \tag{2.5}
\end{equation*}
$$

Hence, $\left\{d\left(a_{n}, a_{n+1}\right)\right\}$ is non-increasing sequence of reals and it is obvious from (2.4) and (2.5) that $\mathrm{d}\left(\mathrm{a}_{\mathrm{n}}, \mathrm{a}_{\mathrm{n}+1}\right) \leq \mathrm{k}^{\mathrm{n}} \mathrm{d}\left(\mathrm{a}_{0}, \mathrm{a}_{1}\right) \rightarrow 0$ asn $\rightarrow \infty$.

Therefore, It follows that $\left\{a_{n}\right\}$ is a Cauchy sequence in X.
leta $_{n} \rightarrow \eta$. For proving $Q_{1}^{n(\eta)}=Q_{2}^{m(\eta)} \eta=\eta$, choose a subsequence $\left\{a_{2 n(i)+1}\right\}$ of the sequence $\left\{a_{2 n}\right\}$ such that $\mathrm{d}\left(\mathrm{a}_{2 \mathrm{n}(\mathrm{i})},\{\eta\}\right) \downarrow 0$. Then

$$
\mathrm{d}\left(\mathrm{a}_{2 \mathrm{n}(\mathrm{i})+1}, \mathrm{Q}_{2}^{\mathrm{m}(\eta)} \eta\right) \leq \mathrm{k} r\left(\mathrm{~d}\left(\mathrm{a}_{2 \mathrm{n}(\mathrm{i})}, \mathrm{a}_{2 \mathrm{n}(\mathrm{i})+1}\right), \mathrm{d}\left(\eta, \mathrm{Q}_{2}^{\mathrm{m}(\eta)} \eta\right), \mathrm{d}\left(\mathrm{a}_{2 \mathrm{n}(\mathrm{i})}, \eta\right)\right)
$$

Letting i $\rightarrow \infty$, we obtain

$$
\left.\left.\begin{array}{rl}
\mathrm{d}\left(\eta, Q_{2}^{\mathrm{m}(\eta)} \eta\right) \leq & \mathrm{k}
\end{array}\right)\left(0, \mathrm{~d}\left(\eta, Q_{2}^{\mathrm{m}(\eta)} \eta\right), 0\right)\right)
$$

i.e) $\left(Q_{2}^{m(\eta)} \eta\right)=\eta$.

Choosing a subsequence $\left\{a_{2 n(k)+1}\right\}$ of the sequence $\left\{a_{2 n+1}\right\}$ such that $d\left(a_{2 n(k)+1}, \eta\right) \downarrow 0$. Similarly, We obtain

$$
\mathrm{Q}_{1}^{\mathrm{n}(\eta)} \eta=\eta .
$$

Suppose Υ satisfies (ii) and there is a $\mathrm{x} \in \mathrm{X}$ such that

$$
\mathrm{Q}_{2}^{\mathrm{m}(\mathrm{x})} \mathrm{u}=\mathrm{Q}_{1}^{\mathrm{n}(\mathrm{x})}=\mathrm{x}
$$

Then,

$$
\begin{aligned}
d(\eta, x)=d(& \left.Q_{1}^{n(\eta)} \eta, T_{2}^{m(x)} x\right) \\
& \leq k r(0,0, d(\eta, x)) \\
& \leq k d(\eta, x)
\end{aligned}
$$

Hence η is unique element satisfying (2.3).
If $\left.\mathrm{I}_{\mathrm{i}} \mathrm{i}=1,2\right)$ are the mappings introduced earlier, then we have

Corollary 2.2.2

Let the mapping $\mathrm{Q}_{\mathrm{i}}: \mathrm{X} \rightarrow \mathrm{X}(\mathrm{i}=1,2)$ satisfy either of the following conditions

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{Q}_{1}^{\mathrm{n}(\mathrm{a})}{ }_{\mathrm{x}}, \mathrm{Q}_{2}^{\mathrm{m}(\mathrm{~b})} \mathrm{y}\right) \leq \mathrm{k} \max \left\{\mathrm{~d}\left(\mathrm{a}, \mathrm{Q}_{1}^{\mathrm{n}(\mathrm{a})} \mathrm{a}\right), \mathrm{d}\left(\mathrm{~b}, \mathrm{Q}_{2}^{\mathrm{m}(\mathrm{~b})} \mathrm{b}\right), \mathrm{d}(\mathrm{a}, \mathrm{~b})\right\} \tag{2.6}
\end{equation*}
$$

Nat. Volatiles \& Essent. Oils, 2021; 8(4): 10015-10029
$d\left(Q_{1}^{n(a)} a, Q_{2}^{m(b)} b\right) \leq \beta d\left(a, Q_{1}^{n(a)} a\right), \gamma d\left(b, Q_{2}^{m(b)} b\right)+\alpha d(a, b)$,

For some non negative real β, γ, α satisfying $\beta+\gamma+\alpha<1$.

Then there exists a unique $\eta \in X$ such that $Q_{1}^{n(\eta)} \eta=Q_{2}^{m(\eta)} \eta=\eta$.

Proof

Suppose (2.6) holds, let $\Upsilon(u, v, w)=\max \{u, v, w\}$ in Theorem 2.1. In case of (2.7)
letk $=\beta+\gamma+\alpha$. Then (3.7) implies (3.6) and the desired result follows from previous part.

In the special case when I_{1} and I_{2} are constant mappings, we have

Theorem 2.2.3

For some positive integers p and q, suppose the mappings $Q_{i}: X \rightarrow X$
$(i=1,2)$ satisfy for all $p, q \in X$,

$$
\begin{equation*}
d\left(Q_{1}^{q} a, Q_{2}^{p} b\right) \leq k r\left(d\left(a, Q_{1}^{q} a\right), d\left(b, Q_{2}^{p} y\right), d(a, b)\right) \tag{2.8}
\end{equation*}
$$

Where $\mathrm{k}<1$ and the function $\Upsilon: G \rightarrow \mathrm{R}^{+}$is symmetric and right continuous. If Υ satisfies condition (i) and (ii) of Theorem 2.1 , then $\mathrm{Q}_{\mathrm{i}}(=1,2)$ have a unique common fixed point $\xi \in \mathrm{X}$.

Proof:

Using theorem 2.1, there is a unique $\eta \in X$ such that $T_{1}^{\eta} \eta=T_{2}^{\eta} \eta$. It follows from (2.8) that η is unique fixed point of Q_{1}^{n}, in fact if $Q_{1}^{n} x=x$ for some $x \in X$, then

$$
\begin{aligned}
d(x, \eta)= & d\left(Q_{1}^{q} x, Q_{2}^{p} \eta\right) \\
& \leq k \Upsilon(0,0, d(x, \eta)) \\
& \leq \operatorname{kd}(x, \eta)
\end{aligned}
$$

That is

$$
\eta=x
$$

Since $Q_{1}^{q}\left(Q_{1} \eta\right)=Q_{1} \eta$, we have $Q_{1} \eta=\eta$.

Similarly

$$
\mathrm{Q}_{2} \xi=\xi .
$$

Corollary 2.2.4

For some integer p and q, suppose the mappings $Q_{i}: X \rightarrow X$ satisfy the condition

$$
\begin{equation*}
\mathrm{d}\left(\mathrm{Q}_{1}^{\mathrm{q}} \mathrm{a}, \mathrm{Q}_{2}^{\mathrm{p}} \mathrm{~b}\right) \leq \mathrm{k} \max \left\{\mathrm{~d}\left(\mathrm{a}, \mathrm{Q}_{1}^{\mathrm{q}} \mathrm{a}\right), \mathrm{d}\left(\mathrm{~b}, \mathrm{Q}_{2}^{\mathrm{p}} \mathrm{~b}\right), \mathrm{d}(\mathrm{a}, \mathrm{~b})\right\} \tag{2.9}
\end{equation*}
$$

For $\mathrm{k}<1$ and for all $\mathrm{a}, \mathrm{b} \in \mathrm{X}$. $\operatorname{ThenT}_{\mathrm{i}}(\mathrm{i}=1,2)$ have a unique common fixed point in X .

Corollary 2.2.5:

For some positive integers m and n, if the mappings $Q_{i}: X \rightarrow X(i=1,2)$ satisfy the inequality

$$
\begin{equation*}
d\left(Q_{1}^{q} a, Q_{2}^{p} b\right) \leq \beta d\left(a, Q_{1}^{q} a\right)+\gamma d\left(a, Q_{2}^{p} b\right)+\alpha d(a, b) \tag{2.10}
\end{equation*}
$$

For some non-negative reals β, γ, α with $\beta+\gamma+\alpha<1$, then $\mathrm{Q}_{\mathrm{i}}(\mathrm{i}=1,2)$ have a unique common fixed point in X .

3.A Common Fixed Point Theorem in D*- Metric Spaces

3.1 Introduction

A class of implicit relation:Throughout this section (X, D^{*}) denotes a D^{*}-metric space and Φ denotes a family of mappings such that each $\varphi \in \Phi, \varphi:\left(\mathbb{R}^{+}\right)^{5} \rightarrow \mathbb{R}^{+}$, and φ is continuous and increasing in each coordinate variable. Also $\omega(v)=\varphi\left(v, v, u_{1} v, u_{2} v, v\right)<v$ for every $v \in R+$ where $u_{1}+$ $u_{2}=3$.

Example 3.1.1

Let $\varphi:\left(\mathbb{R}^{+}\right)^{5} \rightarrow \mathbb{R}^{+}$be defined by
$\varphi\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right)=\frac{1}{7}\left(\mathrm{v}_{1}+\mathrm{v}_{2}+\mathrm{v}_{3}+\mathrm{v}_{4}+\mathrm{v}_{5}\right)$.

3.2 MAIN RESULTS

Lemma 3.2.1

If $\left(X, D^{*}\right)$ is a D^{*} - metric space and If $r>0$, then the ball $B_{D^{*}}(a, r)$ with center a $\in X$ and radius r is open ball.

Proof:

Suppose $\mathrm{c} \in \mathrm{B}_{\mathrm{D}^{*}}(\mathrm{a}, \mathrm{r})$ and hence $\mathrm{D}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{c})<\mathrm{r}$. let $\mathrm{D}^{*}(\mathrm{a}, \mathrm{c}, \mathrm{c})=\delta$ and $\mathrm{r}=\mathrm{r}-\delta$. Let $\mathrm{b} \in$ $B_{D^{*}}\left(c, r^{\prime}\right)$.

By triangular inequality we see that,

$$
\mathrm{D}^{*}(\mathrm{a}, \mathrm{~b}, \mathrm{~b})=\mathrm{D}^{*}(\mathrm{~b}, \mathrm{~b}, \mathrm{a}) \leq \mathrm{D}^{*}(\mathrm{~b}, \mathrm{~b}, \mathrm{c})+\mathrm{D}^{*}(\mathrm{c}, \mathrm{a}, \mathrm{a})<\mathrm{r}^{\prime}+\delta=\mathrm{r}
$$

Therefore

$$
\mathrm{B}_{\mathrm{D}^{*}}\left(\mathrm{c}, \mathrm{r}^{\prime}\right) \subseteq \mathrm{B}_{\mathrm{D}^{*}}(\mathrm{a}, \mathrm{r})
$$

Hence the ball $\mathrm{B}_{\mathrm{D}^{*}}(\mathrm{a}, \mathrm{r})$ is an open ball.

Nat. Volatiles \& Essent. Oils, 2021; 8(4): 10015-10029

Lemma 3.2.2

D^{*} is said to be a continuous function on X^{3} where D^{*} is metric on X

Lemma 3.2.3

If a sequence $\left\{a_{n}\right\}$ converges to a in a D^{*} metric space, then a is unique.

Lemma 3.2.4.

If sequence $\left\{a_{n}\right\}$ convergent to a in a D^{*}-metric space, then the sequence $\left\{a_{n}\right\}$ is a Cauchy sequence.

Lemma 3.2.5.

For every $\mathrm{v}>0, \omega(\mathrm{v})<\mathrm{v}$ if and only if $\lim _{\mathrm{n} \rightarrow \infty} \omega^{\mathrm{n}}(\mathrm{v})=0$, where ω^{n} denotes the composition of ω with itself n times.

Theorem 3.2.6.

Let (X, D^{*}) be a complete D^{*}-metric space. Let A be a self-mapping of X and let R, Q be continuous self-mappings on X satisfying the following results:
(i) $\quad\{P, R\}$ and $\{P, Q\}$ are weakly commuting pairs such that
$P(X) \subset R(X) \cap Q(X) ;$
(ii) There exists a $\varphi \in \emptyset$ such that for all $\mathrm{a}, \mathrm{b} \in \mathrm{X}$,
$D^{*}(P x, P y, P z) \leq \varphi\left(D^{*}(R x, Q y, Q z), D^{*}(R x, P y, P y), D^{*}(Q y, P x, P x), D^{*}(Q y, P y, P y)\right)(3.1)$
Then P, R and Q have a unique common fixed point in X.

Proof:

Let $\mathrm{Pa}_{0} \in X$ where a_{0} is an arbitrary point. Since $P(X) \subset R(X)$, there exists a point $a_{1} \in X$ such that $\mathrm{Pa}_{0}=\mathrm{Ra}_{1}$.

Also $P(X) \subset Q(X)$, we take a point $a_{2} \in X$ such that $P a_{1}=Q a_{2}$. Continuing this way, by applying induction a sequence $\left\{a_{n}\right\}$ in X such that

$$
\begin{array}{ll}
\mathrm{Ra}_{2 \mathrm{n}+1}=\mathrm{Pa}_{2 \mathrm{n}}=\mathrm{b}_{2 \mathrm{n}}, & \mathrm{n}=0,1,2, \ldots \\
\mathrm{Qa}_{2 \mathrm{n}+2}=\mathrm{Pa}_{2 \mathrm{n}+1}=\mathrm{b}_{2 \mathrm{n}+1}, & \mathrm{n}=0,1,2, \ldots \tag{3.2}
\end{array}
$$

Now, we setting that

$$
\begin{equation*}
d_{n}=D^{*}\left(b_{n}, b_{n+1}, b_{n+1}\right), \quad n=0,1,2, \ldots \tag{3.3}
\end{equation*}
$$

Now we have to prove that $d_{2 n} \leq d_{2 n-1}$. $\operatorname{Sinced}_{2 n} \geq d_{2 n-1}$ for some $n \in \mathbb{N}$. If φ is an increasing function, then

$$
\begin{aligned}
d_{2 n}= & D^{*}\left(b_{2 n}, b_{2 n+1}, b_{2 n+1}\right)=D^{*}\left(P x_{2 n}, P x_{2 n+1}, P x_{2 n+1}\right) \\
& =D^{*}\left(P x_{2 n+1}, P x_{2 n}, P x_{2 n}\right) \\
& \leq \varphi\binom{D^{*}\left(R x_{2 n+1}, Q x_{2 n}, Q x_{2 n}\right), \quad D^{*}\left(R x_{2 n+1}, P x_{2 n+1}, P x_{2 n+1}\right), D^{*}\left(R x_{2 n+1}, P x_{2 n}, P x_{2 n}\right)}{D^{*}\left(Q x_{2 n+1}, P x_{2 n}, P x_{2 n+1}\right), \quad D^{*}\left(Q x_{2 n}, P x_{2 n}, P_{2 n}\right)}
\end{aligned}
$$

Nat. Volatiles \& Essent. Oils, 2021; 8(4): 10015-10029

$$
\begin{gather*}
=\varphi\left(\begin{array}{c}
D^{*}\left(b_{2 n}, b_{2 n-1}, b_{2 n-1}\right), \\
D^{*}\left(b_{2 n-1}, b_{2 n+1}, b_{2 n+1}\right),
\end{array} \quad \begin{array}{c}
D^{*}\left(b_{2 n}, b_{2 n+1}, b_{2 n+1}\right), D^{*}\left(b_{2 n}, b_{2 n}, b_{2 n}\right) \\
D^{*}\left(b_{2 n-1}, b_{2 n}, b_{2 n}\right)
\end{array}\right)(3.4) \\
D^{*}\left(b_{2 n-1}, b_{2 n+1}, b_{2 n+1}\right) \leq D^{*}\left(b_{2 n-1}, b_{2 n-1}, b_{2 n}\right)+D^{*}\left(b_{2 n}, b_{2 n+1}, b_{2 n+1}\right) \\
=d_{2 n-1}+d_{2 n} \tag{3.5}
\end{gather*}
$$

By the above inequality we have

$$
\begin{align*}
\mathrm{d}_{2 \mathrm{n}} \leq & \varphi\left(\mathrm{d}_{2 \mathrm{n}-1}, \mathrm{~d}_{2 \mathrm{n}}, 0, \mathrm{~d}_{2 \mathrm{n}-1}+\mathrm{d}_{2 \mathrm{n}-1}\right) \leq \varphi\left(\mathrm{d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}}, 2 \mathrm{~d}_{2 \mathrm{n}}, \mathrm{~d}_{2 \mathrm{n}}\right) \\
& <\mathrm{d}_{2 \mathrm{n}}, \tag{3.6}
\end{align*}
$$

which arrives at a contradiction. Hence $d_{2 n} \leq d_{2 n-1}$.
Similarly, we can prove that $\mathrm{d}_{2 \mathrm{n}+1} \leq \mathrm{d}_{2 \mathrm{n}}$ for $\mathrm{n}=0,1,2, \ldots$, Consequently, $\left\{\mathrm{d}_{\mathrm{n}}\right\}$ is a non-increasing sequence of non-negative reals. Here

$$
\begin{aligned}
& \mathrm{d}_{1}=\mathrm{D}^{*}\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{2}\right) \\
& =\mathrm{D}^{*}\left(\mathrm{~Pa}_{1}, \mathrm{~Pa}_{2}, \mathrm{~Pa}_{2}\right) \\
& \leq \varphi\left(\begin{array}{c}
\mathrm{D}^{*}\left(\mathrm{Ra}_{1}, \mathrm{Ra}_{2}, \mathrm{Qa}_{2}\right), \\
\mathrm{D}^{*}\left(\mathrm{Ra}_{1}, \mathrm{~Pa}_{1}, \mathrm{~Pa}_{1}\right), \mathrm{D}^{*}\left(\mathrm{Ra}_{1}, \mathrm{~Pa}_{2}, \mathrm{~Pa}_{2}\right) \\
\mathrm{D}^{*}\left(\mathrm{Qa}_{2 \mathrm{n}}, \mathrm{~Pa}_{1}, \mathrm{~Pa}_{1}\right), \\
\mathrm{D}^{*}\left(\mathrm{Qa}_{2}, \mathrm{~Pa}_{2}, \mathrm{~Pa}_{2}\right)
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\varphi\left(\mathrm{d}_{0}, \mathrm{~d}_{0}, \mathrm{~d}_{0}+\mathrm{d}_{0}, 0, \mathrm{~d}_{0}\right) \\
& \leq \varphi\left(\mathrm{d}_{0}, \mathrm{~d}_{0}, 2 \mathrm{~d}_{0}, \mathrm{~d}_{0}, \mathrm{~d}_{0}\right)=\omega\left(\mathrm{d}_{0}\right)
\end{aligned}
$$

we have $d_{n} \leq \omega^{n}\left(d_{0}\right)$. suppose $d_{0}>0$, lemma 3.5 becomes $\lim _{n \rightarrow \infty} d_{n}=0$. we clearly have $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}_{\mathrm{n}}=0$, for $\mathrm{d}_{0}=0$, since then $\mathrm{d}_{\mathrm{n}}=0$ for each n . Now we show that the sequence $\left\{\mathrm{Pa}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}\right\}$ is a Cauchy sequence. Since $\lim _{\mathrm{n} \rightarrow \infty} \mathrm{d}_{\mathrm{n}}=0$, it is necessary to show that the sequence $\left\{\mathrm{Pa}_{2 \mathrm{n}}=\mathrm{b}_{2 \mathrm{n}}\right\}$ is a Cauchy sequence. Assume that $\left\{\mathrm{Pa}_{2 \mathrm{n}}=\mathrm{b}_{2 \mathrm{n}}\right\}$ is not a Cauchy sequence. For each even integer 2 k , There is an $\in>0$ for $\mathrm{k}=0,1,2, \ldots$, then there exist even integers $2 \mathrm{n}(\mathrm{k})$ and $2 \mathrm{~m}(\mathrm{k})$ with $2 \mathrm{k} \leq$ $2 \mathrm{n}(\mathrm{k})<2 \mathrm{~m}(\mathrm{k})$ such that

$$
\begin{equation*}
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}}, \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right)>\epsilon \tag{3.8}
\end{equation*}
$$

Let, for each even integers $2 \mathrm{k}, 2 \mathrm{p}(\mathrm{k})$ be the least integer exceeding $2 \mathrm{q}(\mathrm{k})$ satisfying above the equation (3.8)

$$
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right) \leq \in
$$

Nat. Volatiles \& Essent. Oils, 2021; 8(4): 10015-10029

$$
\begin{equation*}
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right)>\in \tag{3.9}
\end{equation*}
$$

For each even integer 2 k , we get that

$$
\begin{gathered}
\in<\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right) \\
\leq \mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})-2}\right)+\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-2}, \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})-2}, \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})-1}\right) \\
+\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})}\right)(3.10) \\
=\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})-2}\right)+\mathrm{d}_{2 \mathrm{p}(\mathrm{k})-2}+\mathrm{d}_{2 \mathrm{p}(\mathrm{k})-1}
\end{gathered}
$$

Hence by equation and $\mathrm{d}_{\mathrm{n}} \rightarrow 0$, we have
$\lim _{k \rightarrow \infty} D^{*}\left(\operatorname{Pa}_{2 q(k)}, \mathrm{Pa}_{2 q(k)}, \mathrm{Pa}_{2 p(k)}\right)=\epsilon$

Using triangular inequality, we obtain
$\left|D^{*}\left(\operatorname{Pa}_{2 q(k)}, \mathrm{Pa}_{2 q(k)}, \mathrm{Pa}_{2 p(k)-1}\right)-D^{*}\left(\mathrm{~Pa}_{2 q(k)}, \mathrm{Pa}_{2 q(k)}, \mathrm{Pa}_{2 p(\mathrm{k})}\right)\right| \leq \mathrm{d}_{2 \mathrm{p}(\mathrm{k})-1}$,

$$
\left.\begin{array}{rl}
\mid D^{*}(& \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})+1},
\end{array} \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})+1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}\right)-\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})},\left(\mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right)\right)
$$

letting as $\mathrm{k} \rightarrow \infty$, in equation (3.6), we have

$$
\begin{gathered}
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})-1}\right) \rightarrow \in \\
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})+1}, \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})+1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}\right) \rightarrow \in \quad \\
\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}}\right) \leq \mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{q}(\mathrm{k})+1}\right)+\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})+1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right) \\
\leq \mathrm{d}_{2 \mathrm{q}(\mathrm{k})} \\
+\varphi\binom{\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})-1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}, \quad \mathrm{~d}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}, \mathrm{Pa}_{2 \mathrm{p}(\mathrm{k})}\right)\right.}{\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})-1}, \mathrm{~Pa}_{2 \mathrm{p}(\mathrm{k})+1}, \mathrm{~Pa}_{2 \mathrm{q}(\mathrm{k})+1}\right),}
\end{gathered}
$$

By using (3.13), $\lim _{\mathrm{k} \rightarrow \infty} \mathrm{d}_{\mathrm{n}}=0$, and continuity and nondecreasing property of φ in each coordinate variable, becomes

$$
\begin{align*}
& \in \leq \varphi(\in, 0, \in, \in, 0) \\
& \qquad \leq \varphi(\in, \in, 2 \in, \in, \in) \\
& =\gamma(\in)<\epsilon \tag{3.14}
\end{align*}
$$

Letting as $\mathrm{k} \rightarrow \infty$, we arrive at a contradiction. Hence $\left\{\mathrm{Pa}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}\right\}$ is a Cauchy sequence and by completeness of X, we can say that it converges to $c \in X$.

That is,

$$
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~Pa}_{\mathrm{n}}=\lim _{\mathrm{n} \rightarrow \infty} \mathrm{~b}_{\mathrm{n}}=\mathrm{c} \tag{3.15}
\end{equation*}
$$

\because the sequences $\left\{\operatorname{Ra}_{2 q+1}=b_{2 q+1}\right\}$ and $\left\{Q \mathrm{a}_{2 \mathrm{q}}=\mathrm{b}_{2 \mathrm{q}}\right\}$ are subsequences of
$\left\{\mathrm{Pa}_{\mathrm{n}}=\mathrm{b}_{\mathrm{n}}\right\}$ andthey have the same limit c. Since R and Q are continuous, we have $\mathrm{RQa}_{2 \mathrm{q}} \rightarrow \mathrm{Rc}$ and $\mathrm{QRa}_{\mathrm{q}+1} \rightarrow \mathrm{Qc}$

Let $\mathrm{D}^{*}\left(\mathrm{RQa}_{2 \mathrm{q}}, \mathrm{QRa}_{2 \mathrm{q}+1}, \mathrm{QRa}_{2 \mathrm{q}+1}\right)=\mathrm{D}^{*}\left(\mathrm{RPa}_{2 \mathrm{q}-1}, \mathrm{QPa}_{2 \mathrm{q}}, \mathrm{QPa}_{2 \mathrm{q}}\right)$

$$
\begin{gather*}
\leq \mathrm{D}^{*}\left(\mathrm{RP}_{2 \mathrm{q}-1}, \mathrm{PRa}_{2 \mathrm{q}-1}, \mathrm{PRa}_{2 \mathrm{q}-1}\right)+ \\
\mathrm{D}^{*}\left(\mathrm{PRa}_{2 \mathrm{q}-1}, \mathrm{PRa}_{2 \mathrm{q}-1}, \mathrm{PQa}_{2 \mathrm{q}}\right)+ \\
\mathrm{D}^{*}\left(\mathrm{PQa}_{2 \mathrm{q}}, \mathrm{PQa}_{2 \mathrm{q}}, \mathrm{QPa}_{2 \mathrm{q}}\right) \tag{3.16}
\end{gather*}
$$

By (ii) and the weak commutativity of $\{P, R\}$ and $\{P, Q\}$ we obtain

$$
\begin{aligned}
& D^{*}\left(R Q a_{2 q}, Q R a_{2 q+1}, Q R a_{2 q+1}\right) \leq D^{*}\left(\operatorname{Ra}_{2 q-1}, \mathrm{~Pa}_{2 q-1}, \mathrm{~Pa}_{2 q-1}\right)+D^{*}\left(\mathrm{PRa}_{2 q}, P Q a_{2 q}, P Q a_{2 q}\right) \\
& +D^{*}\left(\mathrm{~Pa}_{2 q}, \mathrm{~Pa}_{2 q}, \mathrm{Qa}_{2 q}\right)
\end{aligned}
$$

$\leq \mathrm{D}^{*}\left(\mathrm{Ra}_{2 \mathrm{q}-1}, \mathrm{~Pa}_{2 \mathrm{q}-1}, \mathrm{~Pa}_{2 \mathrm{q}-1}\right)$
$+\varphi\left(\begin{array}{cc}D^{*}\left(R^{2} a_{2 q-1}, Q^{2} a_{2 q-1}, Q^{2} a_{2 q-1}\right), & D^{*}\left(R^{2} a_{2 q-1}, P R a_{2 q-1}, P R a_{2 q-1}\right), D^{*}\left(R^{2} a_{2 q-1}, P Q a_{2 q}, P Q a_{2 q}\right) \\ D^{*}\left(Q^{2} a_{2 q}, P R a_{2 q-1}, P R a_{2 q-1}\right), & D^{*}\left(Q^{2} a_{2 q}, P Q a_{2 q}, P Q a_{2 q}\right)\end{array}\right)$

$$
+\mathrm{D}^{*}\left(\mathrm{~Pa}_{2 \mathrm{q}}, \mathrm{~Pa}_{2 \mathrm{q}}, \mathrm{Qa}_{2 \mathrm{q}}\right)
$$

$\leq \mathrm{D}^{*}\left(\mathrm{Ra}_{2 \mathrm{q}-1}, \mathrm{~Pa}_{2 \mathrm{q}-1}, \mathrm{~Pa}_{2 \mathrm{q}-1}\right)+$

$$
\begin{align*}
& \varphi\left(\begin{array}{c}
D^{*}\left(R^{2} a_{2 q-1}, Q^{2} b_{2 q}, Q^{2} a_{2 q}\right), D^{*}\left(R^{2} a_{2 q-1}, R^{2} a_{2 q-1}, R P a_{2 q-1}\right)+D^{*}\left(R^{2} a_{2 q-1}, Q^{2} a_{2 q-1}, Q^{2} a_{2 q-1}\right) \\
D^{*}\left(R^{2} a_{2 q-1}, Q P a_{2 q}, Q P a_{2 q}\right)+D^{*}\left(Q a_{2 q}, Q a_{2 q}, P a_{2 q}\right), \\
D^{*}\left(Q^{2} a_{2 q}, R P a_{2 q-1}, R P a_{2 q-1}\right)+D^{*}\left(R a_{2 q-1}, R a_{2 q-1}, P a_{2 q-1}\right), D^{*}\left(Q^{2} a_{2 q}, Q P a_{2 q}, Q P a_{2 q}\right) \\
+D^{*}\left(Q a_{2 q}, P a_{2 q}, P a_{2 q}\right)
\end{array}\right) \\
& +D^{*}\left(\mathrm{~Pa}_{2 q}, \mathrm{~Pa}_{2 q}, \mathrm{Qa}_{2 q}\right) . \tag{3.17}
\end{align*}
$$

If $D^{*}\left(R_{c}, Q_{c}, Q_{c}\right)>0$, then letting as $n \rightarrow \infty$ we have
$D^{*}\left(R_{c}, Q_{c}, Q_{c}\right)$
$\leq \mathrm{D}^{*}(\mathrm{c}, \mathrm{c}, \mathrm{c})+\varphi\left(\begin{array}{cc}\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Qc}, \mathrm{Qc}), & \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Qc}, \mathrm{Qc})+0, \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Qc}, \mathrm{Qc})+0 \\ \mathrm{D}^{*}(\mathrm{Qc}, \mathrm{Rc}, \mathrm{Rc})+0, & \mathrm{D}^{*}(\mathrm{Qc}, \mathrm{Qc}, \mathrm{Qc})+0\end{array}\right)+0$
$\leq\left(\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Qc}, \mathrm{Qc})\right)<\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Qc}, \mathrm{Qc})$,
we arrive at a contradiction.

Therefore $\mathrm{Rc}=\mathrm{Qc}$.
Now, for proving $\mathrm{Pc}=\mathrm{Rc}$. We define the inequality

$$
\begin{gather*}
\mathrm{D}^{*}\left(\mathrm{RPa}_{2 \mathrm{q}+1}, \mathrm{Pc}, \mathrm{Pc}\right) \leq \mathrm{D}^{*}\left(\mathrm{RPa}_{2 \mathrm{q}+1}, \mathrm{PRa}_{2 \mathrm{q}+1}, \mathrm{PRa}_{2 \mathrm{q}+1}\right)+ \\
\mathrm{D}^{*}\left(\mathrm{Pc}, \mathrm{Pc}, \mathrm{PRa}_{2 \mathrm{q}+1}\right) . \tag{3.18}
\end{gather*}
$$

by (ii) and the weak commutativity of $\{P, R\}$, we obtain
$\mathrm{D}^{*}\left(\mathrm{RPa}_{2 \mathrm{p}+1}, \mathrm{Pc}, \mathrm{Pc}\right) \leq \mathrm{D}^{*}\left(\mathrm{Ra}_{2 \mathrm{q}+1}, \mathrm{~Pa}_{2 \mathrm{q}+1}, \mathrm{~Pa}_{2 \mathrm{q}+1}\right)+$

$$
\varphi\left(\begin{array}{cc}
\mathrm{D}^{*}\left(\mathrm{Rc}, \mathrm{Qc}, \mathrm{QRa} \mathrm{Ra}_{2 q+1}\right), \tag{3.19}\\
\mathrm{D}^{*}(\mathrm{Qc}, \mathrm{Qc}, \mathrm{Qc}), & \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc}) \\
\mathrm{D}^{*}(\mathrm{Qc} c, \mathrm{Pc}, \mathrm{Pc})
\end{array}\right)
$$

lettingn $\rightarrow \infty$, we get

$$
\begin{aligned}
& D^{*}(R c, P c, P c) \leq D^{*}(c, c, c)+\varphi\binom{\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Cc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc} c \mathrm{Pc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc})}{\mathrm{D}^{*}(\mathrm{Qc}, \mathrm{Pc}, \mathrm{Pc}), \mathrm{D}^{*}(\mathrm{Qc}, \mathrm{Dc}, \mathrm{Pc})} \\
&=\varphi\left(0, \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Rc}, \mathrm{Rc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc}), \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc})\right) \\
& \leq \delta\left(\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc})\right)
\end{aligned}
$$

$$
\begin{equation*}
<\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{Pc}, \mathrm{Pc}) \tag{3.20}
\end{equation*}
$$

Hence by $\mathrm{Rc}=\mathrm{Pc}$. ThereforePc=Rc=Qc. Hence we follows that
$D^{*}\left(\mathrm{Pc}, \mathrm{Pa}_{2 \mathrm{q}}, \mathrm{Pa}_{\mathrm{q}}\right)$
lettingn $\rightarrow \infty$, we have

$$
\begin{gather*}
D^{*}(\mathrm{Pc}, \mathrm{c}, \mathrm{c}) \leq \varphi\left(\mathrm{D}^{*}(\mathrm{Rc}, \mathrm{c}, \mathrm{c}), 0, \mathrm{D}^{*}(\mathrm{Rc}, \mathrm{c}, \mathrm{c}), \mathrm{D}^{*}(\mathrm{c}, \mathrm{Pc}, \mathrm{Pc}), 0\right) \\
\leq \omega\left(\mathrm{D}^{*}(\mathrm{Pc}, \mathrm{c}, \mathrm{c})\right)<\mathrm{D}^{*}(\mathrm{Pc}, \mathrm{c}, \mathrm{c}) \tag{3.22}
\end{gather*}
$$

$\mathrm{Pc}=\mathrm{c}=\mathrm{Rc}=\mathrm{Qc}$. Therefore c is a common fixed point of P, R, and Q . The unicity of the common fixed point is not hard to verify.

Corollary 3.2.7

Let P, T, R, Q, and U be self-mapping of complete D^{*}-metric space (X, D^{*}), and let $S R, T H$ be continuous self-mappings on X satisfying the following conditions:
I) $\quad\{\mathrm{P}, \mathrm{RT}\}$ and $\{\mathrm{P}, \mathrm{QU}\}$ are weakly commuting pairs such that

$$
\mathrm{P}(\mathrm{X}) \subset \mathrm{RT}(\mathrm{X}) \bigcap \mathrm{QU}(\mathrm{X}) ;
$$

II) There exists a $\varphi \in \emptyset$ such that for all $\mathrm{a}, \mathrm{b} \in \mathrm{X}$,

$$
\begin{equation*}
\mathrm{D}^{*}(\mathrm{~Pa}, \mathrm{~Pb}, \mathrm{Pc}) \leq \varphi\binom{\mathrm{D}^{*}(\mathrm{TQa}, \mathrm{QUb}, \mathrm{QUc}), \mathrm{D}^{*}(\mathrm{RTa}, \mathrm{~Pa}, \mathrm{~Pa}), \mathrm{D}^{*}(\mathrm{RTa}, \mathrm{~Pb}, \mathrm{~Pb}),}{\mathrm{D}^{*}(\mathrm{QUb}, \mathrm{~Pa}, \mathrm{~Pa}), \mathrm{D}^{*}(\mathrm{QUb}, \mathrm{~Pb}, \mathrm{~PB})} \tag{3.23}
\end{equation*}
$$

If $R T=T R, Q U=U Q, P U=U P$, and $P T=T P$, then P, R, T, U, and Q have a unique common fixed point in X .

Proof:

Using theorem 3.2.6, P, QU, and RT have a unique common fixed point in X.Which implies, there exists $u \in X$, such that $P(u)=Q U(u)=R T(u)=u$.

We show that

$$
\mathrm{U}(\mathrm{u})=\mathrm{u} . \mathrm{By}(\mathrm{II})
$$

We obtain
$D^{*}(\mathrm{ARa}, \mathrm{Aa}, \mathrm{Aa}) \leq \varphi\binom{\mathrm{D}^{*}(\mathrm{RTTu}, \mathrm{QUu}, \mathrm{QUu}), \mathrm{D}^{*}(\mathrm{RTTu}, \mathrm{PTu}, \mathrm{PTu}), \mathrm{D}^{*}(\mathrm{RTTu}, \mathrm{Pu}, \mathrm{Pu})}{,\mathrm{D}^{*}(\mathrm{QUu}, \mathrm{PTu}, \mathrm{PTu}), \mathrm{D}^{*}(\mathrm{QUu}, \mathrm{Pu}, \mathrm{Pu})}$

Now, if $\mathrm{Tu} \neq \mathrm{u}$, then we get

$$
\begin{aligned}
& D^{*}(T u, u, u) \leq \varphi\left(D^{*}(T u, u, u), D^{*}(T u, T u, T u), D^{*}(T u, u, u), D^{*}(u, T u, T u), D^{*}(u, u, u)\right) \\
& \leq \varphi\left(D^{*}(T u, u, u), D^{*}(T u, u, u), D^{*}(T u, u, u), 2 D^{*}(T u, u, u), D^{*}(T u, u, u)\right)
\end{aligned}
$$

$<\mathrm{D}^{*}(\mathrm{Tu}, \mathrm{u}, \mathrm{u})$,

We arrive at a contradiction. Hence $\mathrm{Tu}=\mathrm{u}$.
Hence R(u) $=$ RT $(u)=u$. Similarly, we have that $Q(u)=U(u)=u$.

Corollary 3.2.8

Let E_{i} be a sequence self-mapping of complete D^{*}-metric space (X, D^{*})for $i \in \mathbb{N}$, and let R, Q be continuous self-mappings on X satisfying the following conditions:
i) $\quad \exists \mathrm{i}_{0} \in \mathbb{N}$ such that $\left\{\mathrm{E}_{\mathrm{i}_{0}}, \mathrm{R}\right\}$ and $\left\{\mathrm{P}_{\mathrm{i}_{0}}, \mathrm{Q}\right\}$ are weakly commuting pairs such that $\mathrm{E}_{\mathrm{i}_{0}}(\mathrm{X}) \subset$ $R(X) \cap Q(X) ;$

Nat. Volatiles \& Essent. Oils, 2021; 8(4): 10015-10029
ii) $\exists \varphi \in \emptyset$ and $\mathrm{i}, \mathrm{j}, \mathrm{k} \in \mathbb{N}$ such that for all $\mathrm{a}, \mathrm{b} \in \mathrm{X}$,

$$
\begin{equation*}
D^{*}\left(E_{i} a, E_{j} b, E_{k} c\right) \leq \varphi\binom{D^{*}(R a, Q b, Q c), D^{*}\left(R a, E_{i} a, P_{i} a\right), D^{*}\left(R a, P_{j} b, E_{j} c\right),}{D^{*}\left(Q b, E_{i} a, E_{i} a\right), D^{*}\left(Q b, P_{j} b, E_{j} b\right)}(3 \tag{3.26}
\end{equation*}
$$

In this case $\mathrm{E}_{\mathrm{i}}, \mathrm{S}$ and T have a unicity of common fixed point in X for each $\mathrm{i} \in \mathbb{N}$

Proof :

Using the theorem 3.2.6, let R, Q, and $E_{i_{0}}$ have a unicity of common fixed point in X for some $i=$ $\mathrm{j}=\mathrm{k}=\mathrm{i}_{0} \in \mathbb{N}$. Then, there exists a unique $\mathrm{u} \in \mathrm{X}$ such that

$$
\begin{equation*}
\mathrm{R}(\mathrm{u})=\mathrm{Q}(\mathrm{u})=\mathrm{E}_{\mathrm{i}_{0}}(\mathrm{u})=\mathrm{u} \tag{3.27}
\end{equation*}
$$

If there exists $\mathrm{i} \in \mathbb{N}$ such that $\mathrm{i} \neq \mathrm{i}_{0}$ and $\mathrm{j}=\mathrm{i}_{0}, \mathrm{k}=\mathrm{i}_{0}$. Then we obtain

$$
\begin{equation*}
D^{*}\left(E_{i} u, E_{i_{0}} u, E_{i_{0}} u\right) \leq \quad \varphi\binom{D^{*}(R u, Q u, Q u), D^{*}\left(R u, E_{i} u, E_{i} u\right), D^{*}\left(R u, E_{i_{0}} u, E_{i_{0}} u\right),}{D^{*}\left(Q u, P_{i} u, E_{i} u\right), D^{*}\left(Q u, E_{i_{0}} u, E_{i_{0}} u\right)} \tag{3.28}
\end{equation*}
$$

Now $\operatorname{ifE}_{\mathrm{i}} \mathrm{u} \neq \mathrm{u}$, then we obtain

$$
\begin{aligned}
D^{*}\left(E_{i} u, u, u\right) \leq \varphi\binom{D^{*}(u, u, u), D^{*}\left(u, E_{i} u, E_{i} u\right), D^{*}(u, u, u),}{D^{*}\left(u, E_{i} u, E_{i} u\right), D^{*}\left(E_{i} u, u, u\right)}(3.29) \\
<D^{*}\left(E_{i} u, u, u\right)
\end{aligned}
$$

We arrive at a contradiction. Hence for every i $\in \mathbb{N}$ it follows that $\mathrm{E}_{\mathrm{i}}(\mathrm{u})=\mathrm{u}$ for every $\mathrm{i} \in \mathbb{N}$.

REFERENCES

[1]
B.Ahmad,M.Ashraf,andB.E.Rhoades,FixedpointtheoremsforexpansivemappingsinD-metricspaces,IndianJ.PureAppl.Math.32(2001),no.10,1513-1518.
[2]
B.C.Dhage,Generalisedmetricspacesandmappingswithfixedpoint,Bull.CalcuttaMat h.Soc.84(1992), no.4,329-336.
[3] B.C.Dhage,SmratiArya,andJeongSheokUme,Ageneral lemmaforfixed-pointtheoremsinvolving more than two maps in D-metric spaces with applications, Int. J. Math.Math.Sci.2003(2003),no.11,661-672.
[4] B. C. Dhage, A. M. Pathan, and B. E. Rhoades, A general existence principle for fixed pointtheoremsinD-metricspaces,Int.J.Math.Math.Sci.23(2000),no.7,441-448.
[5]
B.C.DhageandB.E.Rhoades,Acomparisonoftwocontraction principles,Math.Sci.Res. Hot-Line3(1999), no.8,49-53.
[6]
J.S.Ume,Remarksonnonconvexminimizationtheoremsandfixedpointtheoremsinco
m-pleteD-metricspaces, Indian J. PureAppl. Math.32(2001), no.1, 25-36.
J.S.UmeandJ.K.Kim,CommonfixedpointtheoremsinD-metricspaceswithlocalbound-edness,IndianJ.PureAppl.Math.31(2000),no.7,865871.
[8] T. Veerapandi and K. ChandrasekharaRao, Fixed points in Dhage metric spaces, Pure Appl.Math.Sci.43(1996),no.1-2,9-14.

