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1. INTRODUCTION 

In the 20th century, the theoretical foundation of fixed point analysis was postulated. The Banach 

fixed point theorem is a useful method in metric space theory. Stefan Banach (1892-1945), the 

developer of functional analysis, developed and presented the theorem in 1922, beginning with the 

multivalued variant of the BanachCaccioppoli contradiction theory demonstrated by S.B Nadler Jr in 

1969. H Scarf proposed the first constructive method of calculating the fixed point of a continuous 

function in 1973. The fixed points of some relevant single valued mappings are also important 

because their findings can be applied in architecture, physics, computer science, economics, and 

telecom. Motivated by this fundamental  theory , we initiate some common fixed points theorems 

on the most happening field of D∗metric spaces. 

2. PRELIMINARIES 

2.1 BASIC DEFINITIONS 

Definition 2.1.1 

Let S be any set. A metric for S is a function ‘f’ with domain S× S  and  

range contained in [0,∞) such that 
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1.    ρ(p, p) = 0                      (p ∈ S) 

2.ρ(p, q) > 0               (p, q ∈ S, p ≠ q) 

3.    ρ(p, q) = ρ(q, p)     (p, q ∈ S) 

4.    ρ(p, q) ≤ ρ(p, r) + ρ(r, q)(p, q, r ∈ S) (Triangle Inequality) 

Definition 2.1.2 

If there exists a∈ X such that Sa = Ta = y, then a is called a coincidence point of S and T, while b is 

called a point of coincidence of T and S. If Sa = Ta = a, then a is called a Common Fixed Point of S and 

T. 

Definition 2.1.3 

Let X be a non-empty set. A generalized metric ( orD∗ metric) on X is a function D∗: X3 → [0, ∞) that 

satisfies the following conditions for each  a, b, c, u ∈ X. 

i. D∗(a, b, c)  ≥ 0 

ii. D∗ (a, b, c) = 0 iff a = b = c 

iii. D∗ (a, b, c) = D∗(P{a, b, c}), ( Symmetry) P is a permutation function. 

iv. D∗(a, b, c)  ≤ D∗(a, b, u) + D∗ (u, c, c) 

The pair (X, D∗) is called generalized metric (or  D∗ metric) space. 

Definition 2.1.4 

Let (X, D∗) be a D∗ - metric space. D∗ is said to be continuous function on X3 if lim
n→∞

D∗(an, bn, cn) = 

D∗(a, b, c) Whenever a sequence {(an, bn, cn)} in X3 converges to a point (a, b, c) ∈ X3, that is 

lim
n→∞

an = a, lim
n→∞

bn = b, lim
n→∞

cn = c. 

Definition 2.1.5 

Let (X, dX) and (Y, dY) be metric spaces. A function f: X → Y is continuous at 

u∈ X if for every ϵ> 0 there exists δ > 0 such that dX(a,u) <δ implies that 

dY (f(a), f(u)) < ϵ. 

Definition 2.1.6 

Let X be a nonempty set. A generalized metric (or D∗ −metric) on X is a function, D∗ ∶ X3  →

[0,∞), satisfies the following conditions for each a, b, c, u ∈ X: 

1) D∗(a, b, c) ≥ 0, 

2) D∗(a, b, c) = 0 if and only if a = b = c, 
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3) D∗(a, b, c) =  D∗(p{a, b, c}), (symmetry) where p is a permutation function, 

4) D∗(a, b, c) ≤ D∗(a, b, c) + D∗(u, c, c). 

The pair (X, D∗) is called a generalized metric (or D∗ −metric) space. 

 

Example 2.1.6.1 

a) D∗(a, b, c) = max{d(a, b), d(b, c), d(c, a)}, 

b) D∗(a, b, c) =  d(x, y) + d(y, z) + d(z, x).Here, d is the ordinary metric on X. 

c) If X =  ℝn then we define D∗(a, b, c) = (‖a − b‖P + ‖b − c‖P + ‖c − a‖P)
1

p  for 

every p ∈  ℝ+. 

d) If X = ℝ, then we define 

D∗(a, b, c) = {
0                if a = b = c

max{a, b, c}                   otherwise
} 

 

DEFINITION 2.1.7: 

Let (X,D∗) be a D∗ −metric space. D∗ is said to be a continuous function on X3 if lim
n→∞

D∗(an, bn, cn) =

 D∗(a, b, c)Whenever a sequence {(an, bn, zn)} in X3 converges to a point (a, b, c) ∈ X3, that is 

lim
n→∞

an = a, lim
n→∞

bn = b, lim
n→∞

cn = c. 

 

DEFINITION 2.1.8:  

In D∗ −metric space (X, D∗), P and R be two mappings into itself.  

Then {A,S} is said to be weakly commuting pair if 

D∗(ASx, SAx, SAx) ≤  D∗(Ax, Sx, Sx).  

For all a ∈ X.Clearly a commuting pair is weakly commuting. 

2.2 SOME FIXED AND COMMON FIXED POINT THEOREMS IN METRIC SPACESFOR TWO SELF 

MAPPINGS 

Let (X, d) be a metric space and Ti(i = 1,2) be self mappings of X.The purpose of this chapter is to 

investigate the fixed and common fixed points of Ti, when the pairTi(i = 1,2) satisfies a condition of 

the following type: 

d(Q1a, Q2b) ≤ ϒ(d(a, Q1a), d(b, Q2b)d(a, b))        ∀ a, b ∈ X,           (2.1) 

Where ϒ is some real valued function defined on a subset ofR × R × R  



Nat. Volatiles & Essent. Oils, 2021; 8(4): 10015-10029 
 

10018 
 

Throughout this chapter, (X, d) is a complete metric space, Q is the closure of the 

set{d(a, b): a, b ∈ X} and P =  Q x Q x Q. A function ϒ: G → R+(non-negative reals) is right 

continuous iff(un1, un2, un3), (u1, u2, u3) ∈ G and unk ↓ uk, k = 1, 2, 3 (↓= decreasing),then 

Ψ(un1, un2, un3) → Ψ(u1, u2, u3). 

The function ϒ will be called symmetric iff  ϒ(u, v, w) = ϒ(u, v, w) for all(u, v, w) ∈ G. 

Further, the mappings Qi(i = 1,2) satisfy a I1, I2,ϒ, k) functional inequality iff for each 

 i(i = 1,2),there is a mapping Ii: Qi ×  X → I
+(positive integers) such that if  

n(a) = I1(T1, a),then 

d (Q1
n(x)x, Q2

m(y)
y) ≤ kϒ (d (x, Q1

n(a)a) , d (b, T2
m(b)y) , d(a, b)),                          (2.2) 

For all a, b ∈ X, where k is a some real constant, and ϒ: G → R+ is a symmetric rightcontinuous 

function. If (2.2) holds for k = 1, then (I1, I2,ϒ) will denote (I1, I2,ϒ, 1). 

Theorem 2.2.1 

Considering  the mapping Qi: X → X (i = 1,2), satisfy a (I1, I2,ϒ, k) functional inequality for 

some  k < 1. 

If (i) Ψ(u, v, w) ≤ max{u, v} , (u, v, u) ∈ G, then there exists a η ∈ X such that 

Q1
n(η)

= Q2
m(η)

η =  η.                         (2.3) 

If (ii) ϒ(0, 0, u) ≤ u for each u ∈  ℚ, then η is unique satisfying (2.3) 

Proof 

Suppose  a0  ∈ X and let a1 = Q1
n(a0)a0, a2 = Q2

m(a1)a1, and inductively 

a2n = Q2
m(a2n−1)a2n−1, a2n+1 = T1

n(a2n)a2n. 

Then,        d(a2n, a2n+1) ≤ kϒ(d(a2n−1, a2n), (a2n, a2n+1), d(a2n−1, a2n)). 

Since k < 1, it from by (i) we have 

d(a2n, a2n+1) ≤ kd((a2n−1, a2n)         (2.4) 

In a similar manner 

d(a2n−1, a2n) ≤ kd(a2n−2, a2n−1).        (2.5) 
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Hence, {d(an, an+1)} is non-increasing sequence of reals and it is obvious from (2.4) and (2.5) that  

d(an, an+1)  ≤  k
n d(a0, a1) → 0asn → ∞. 

Therefore, It follows that {an} is a Cauchy sequence in X.  

letan → η. For proving Q1
n(η)

= Q2
m(η)

η =  η, choose a subsequence {a2n(i)+1} of the sequence {a2n} 

such that d(a2n(i), {η})  ↓ 0. Then 

d(a2n(i)+1, Q2
m(η)

η) ≤  kϒ(d(a2n(i), a2n(i)+1), d (η, Q2
m(η)

η) , d(a2n(i), η)) 

Letting i → ∞, we obtain 

d (η, Q2
m(η)

η)      ≤   kϒ (0, d (η, Q2
m(η)

η) , 0) 

≤ kd(η, Q2
m(η)

η), 

i.e) (Q2
m(η)

η) = η.  

Choosing a subsequence {a2n(k)+1} of the sequence {a2n+1} such that d(a2n(k)+1, η) ↓ 0. Similarly, 

We obtain  

Q1
n(η)

η = η. 

 

Suppose ϒ satisfies (ii) and there is a x ∈ X such that  

Q2
m(x)

u = Q1
n(x)

= x. 

Then,             d(η, x) = d (Q1
n(η)

η, T2
m(x)x) 

 ≤ kϒ(0,0, d(η, x)) 

 ≤ kd(η, x). 

Hence η is unique element satisfying (2.3). 

If Ii(i = 1,2) are the mappings introduced earlier, then we have 

Corollary 2.2.2 

Let the mapping Qi: X → X(i = 1,2) satisfy either of the following conditions 

d (Q1
n(a)x, Q2

m(b)y) ≤ kmax
{d (a, Q1

n(a)a) , d (b, Q2
m(b)b) , d(a, b)}

for some k < 1,
                      (2.6) 
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d (Q1
n(a)
a, Q2

m(b)
b) ≤  βd (a, Q1

n(a)
a) , γd (b, Q2

m(b)
b) + αd(a, b),                                 (2.7) 

For some non negative real  β, γ, α satisfying β + γ + α < 1. 

Then there exists a unique η ∈ X such that Q1
n(η)

η = Q2
m(η)

η = η. 

Proof 

Suppose (2.6) holds, let ϒ(u, v, w) = max {u, v, w} in Theorem 2.1. In case of (2.7) 

letk = β + γ + α. Then (3.7) implies (3.6) and the desired result follows from previous part. 

In the special case when I1 and I2 are constant mappings, we have 

Theorem 2.2.3 

For some positive integers p and q, suppose the mappings Qi: X → X 

(i = 1,2)satisfy for all p, q ∈ X, 

d(Q1
q
a, Q2

p
b) ≤ kϒ(d(a, Q1

q
a), d(b, Q2

p
y), d(a, b))                           (2.8) 

Where k < 1 and the function ϒ: G → R+is symmetric and right continuous. If ϒ satisfies condition 

(i) and (ii) of Theorem 2.1, then Qi( = 1,2) have a unique common fixed point ξ ∈ X. 

Proof: 

Using theorem 2.1, there is a unique η ∈ X such that T1
η
η =  T2

η
η. It follows from (2.8) that η is 

unique fixed point of Q1
n, in fact if Q1

nx = x for some x ∈ X, then 

d(x, η) = d(Q1
q
x, Q2

p
η) 

≤ kϒ (0,0, d(x, η)) 

≤ kd(x, η), 

That is                                    η = x. 

Since Q1
q(Q1η) = Q1η, we have Q1η = η. 

Similarly                            Q2ξ = ξ. 

 

Corollary 2.2.4 

For some integer p and q, suppose the mappings Qi: X → X satisfy the condition 
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d(Q1
q
a, Q2

p
b) ≤  kmax{ d(a, Q1

q
a), d(b, Q2

p
b), d(a, b)}                 (2.9) 

For k < 1 and for all a, b ∈ X.ThenTi(i = 1,2) have a unique common fixed point in X. 

Corollary 2.2.5: 

For some positive integers m and n, if the mappings Qi: X → X(i = 1,2) satisfy the inequality 

d(Q1
q
a, Q2

p
b) ≤  βd(a, Q1

q
a) +  γd(a, Q2

p
b) + αd(a, b)     (2.10) 

For some non-negative realsβ, γ, α with β + γ + α < 1, then Qi(i = 1,2) have a unique common 

fixed point in X.  

3.A Common Fixed Point Theorem in 𝐃∗- Metric Spaces 

3.1 Introduction 

A class of implicit relation:Throughout this section (X,D∗) denotes a D∗-metric space 

and Φ denotes a family of mappings such that each ϕ ∈Φ, ϕ : (ℝ+)5→ℝ+, and ϕ is continuous and 

increasing in each coordinate variable. Also ω(v) = ϕ(v, v, u1v, u2v, v) < v for every v ∈R+ where u1 + 

u2= 3. 

Example 3.1.1 

Let ϕ:(ℝ+)5→ℝ+be defined by 

ϕ(v1, v2, v3, v4, v5) =  
1

7
(v1 + v2 + v3 + v4 + v5). 

3.2 MAIN RESULTS 

Lemma 3.2.1 

If (X, D∗) is a D∗ − metric space and If r> 0, then the ball BD∗(a, r) with center a ∈ X and radius r is 

open ball. 

Proof:  

Suppose c ∈  BD∗(a, r) and hence D∗(a, c, c) < r. let D∗(a, c, c) =  δ and rʼ = r − δ. Let b ∈

 BD∗(c, r
ʼ). 

By triangular inequality we see that, 

D∗(a, b, b) =  D∗(b, b, a)  ≤ D∗(b, b, c) + D∗(c, a, a) < rʼ +  δ = r. 

Therefore                                    BD∗(c, r
ʼ) ⊆ BD∗(a, r). 

Hence the ball BD∗(a, r) is an open ball.  
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Lemma 3.2.2 

D∗is said to be a continuous function on X3 where D∗ is metric on X 

Lemma 3.2.3 

If a sequence {an} converges to a in a D∗ metric space, then a is unique. 

Lemma 3.2.4. 

 If sequence {an}  convergent to a in a  D∗ −metric space,  then the sequence {an} is a Cauchy 

sequence. 

Lemma 3.2.5. 

For every v > 0, ω(v) < v if and only if lim
n→∞

ωn(v) = 0, where ωn denotes the composition 

of ω with itself n times. 

Theorem 3.2.6. 

 Let (X, D∗) be a complete D∗ −metric space. Let A be a self-mapping of X and let R, Q be 

continuous self-mappings on X satisfying the following results: 

(i) {P, R} and {P, Q} are weakly commuting pairs such that  

P(X) ⊂ R(X) ⋂ Q(X); 

(ii) There exists a φ ∈ ∅ such that for all a, b ∈ X, 

D∗(Px, Py, Pz) ≤ φ(D∗(Rx, Qy, Qz), D∗(Rx, Py, Py), D∗(Qy, Px, Px), D∗(Qy, Py, Py))(3.1) 

Then P, R and Q have a unique common fixed point in X. 

Proof: 

Let Pa0  ∈ X where a0 is an arbitrary point. Since P(X) ⊂ R(X), there exists a point a1 ∈ X such 

that Pa0 = Ra1. 

Also P(X) ⊂ Q(X), we take a point a2 ∈ X such that Pa1 = Qa2. Continuing this way, by applying 

induction a sequence {an} in X such that 

Ra2n+1 = Pa2n = b2n,           n = 0, 1, 2,…, 

Qa2n+2 = Pa2n+1 = b2n+1,     n = 0, 1, 2,…, (3.2) 

Now, we setting that 

dn = D
∗(bn, bn+1, bn+1),          n = 0, 1, 2,…, (3.3) 

Now we have to prove that d2n ≤ d2n−1.Sinced2n ≥ d2n−1 for some n ∈ ℕ. If φ is an increasing 

function, then 

d2n = D
∗(b2n, b2n+1, b2n+1)= D

∗(Px2n, Px2n+1, Px2n+1) 

= D∗(Px2n+1, Px2n, Px2n) 

≤ φ(
D∗(Rx2n+1, Qx2n, Qx2n),       D

∗(Rx2n+1, Px2n+1, Px2n+1), D
∗(Rx2n+1, Px2n, Px2n)

D∗(Qx2n+1, Px2n, Px2n+1),             D
∗(Qx2n, Px2n, Px2n)

) 



Nat. Volatiles & Essent. Oils, 2021; 8(4): 10015-10029 
 

10023 
 

= φ(D
∗(b2n, b2n−1,b2n−1),     D

∗(b2n,b2n+1,b2n+1),D
∗(b2n,b2n,b2n)

D∗(b2n−1,b2n+1,b2n+1),                                   D
∗(b2n−1,b2n,b2n)

)(3.4) 

D∗(b2n−1, b2n+1, b2n+1) ≤ D
∗(b2n−1, b2n−1, b2n) + D

∗(b2n, b2n+1, b2n+1) 

  =  d2n−1 + d2n                    (3.5) 

By the above inequality we have 

d2n ≤  φ(d2n−1, d2n, 0, d2n−1 + d2n−1) ≤ φ(d2n, d2n, d2n, 2d2n, d2n) 

< d2n,                                                                                              (3.6) 

which arrives at a contradiction. Hence d2n ≤ d2n−1. 

Similarly, we can prove that d2n+1 ≤ d2n for n = 0, 1, 2, …,Consequently, {dn} is a non-increasing 

sequence of non-negative reals. Here 

d1 = D
∗(b1, b2, b2) 

= D∗(Pa1, Pa2, Pa2) 

≤ φ(
D∗(Ra1, Ra2, Qa2),       D

∗(Ra1, Pa1, Pa1), D
∗(Ra1, Pa2, Pa2)

D∗(Qa2n, Pa1, Pa1),             D
∗(Qa2, Pa2, Pa2)

) 

= φ( D
∗(y0,y1,y1),     D

∗(y0,y1,y1),D
∗(y0,y2,y2)

D∗(y1,y1,y1),                                   D
∗(y1,y2,y2)

)  (3.7) 

          = φ (d0, d0, d0 + d0, 0, d0) 

≤  φ (d0, d0, 2d0, d0, d0) = ω(d0) 

we have dn ≤ ω
n(d0). suppose d0 > 0, lemma 3.5 becomes lim

n→∞
dn = 0. we clearly have 

lim
n→∞

dn = 0, for d0 =0, since then dn = 0 for each n. Now we show that the sequence {Pan = bn} is 

a Cauchy sequence. Since lim
n→∞

dn = 0, it is necessary to show that the sequence {Pa2n = b2n} is a 

Cauchy sequence. Assume that {Pa2n = b2n} is not a Cauchy sequence. For each even integer 2k, 

There is an ∈ >  0  for k = 0,1,2,…,then there exist even integers 2n(k) and 2m(k) with 2k ≤

2n(k) < 2m(k) such that 

D∗(Pa2q, Pa2q(k), Pa2p(k)) > ∈  (3.8) 

Let, for each even integers 2k, 2p(k) be the least integer exceeding 2q(k) satisfying above the 

equation (3.8) 

D∗(Pa2q(k), Pa2q(k), Pa2p(k)) ≤ ∈, 
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D∗(Pa2q(k), Pa2q(k), Pa2p(k)) > ∈.                         (3.9) 

For each even integer 2k, we get that 

∈  < D∗(Pa2q(k), Pa2q(k), Pa2p(k)) 

≤ D∗(Pa2q(k), Pa2q(k), Pa2p(k)−2) + D
∗(Pa2p(k)−2, Pa2q(k)−2, Pa2q(k)−1) 

+D∗(Pa2p(k)−1, Pa2p(k)−1, Pa2p(k))(3.10) 

=  D∗(Pa2q(k), Pa2q(k), Pa2p(k)−2) + d2p(k)−2 + d2p(k)−1 

Hence by equation and dn → 0, we have 

lim
k→∞

D∗(Pa2q(k), Pa2q(k), Pa2p(k)) = ∈  (3.11)  

Using triangular inequality, we obtain  

|D∗(Pa2q(k), Pa2q(k), Pa2p(k)−1) − D
∗(Pa2q(k), Pa2q(k), Pa2p(k))|  ≤  d2p(k)−1, 

 

|D∗(Pa2q(k)+1, Pa2q(k)+1, Pa2p(k)−1) − D
∗(Pa2q(k), Pa2q(k), Pa2p(k)) 

≤ d2p(k)−1+d2q(k).        (3.12) 

letting as k → ∞, in equation (3.6), we have 

D∗(Pa2q(k), Pa2q(k), Pa2p(k)−1)  → ∈ 

D∗(Pa2q(k)+1, Pa2q(k)+1, Pa2p(k)−1) → ∈ (3.13) 

 D∗(Pa2q(k), Pa2q(k), Pa2p) ≤  D
∗(Pa2q(k), Pa2q(k), Pa2q(k)+1) + D

∗(Pa2q(k)+1, Pa2p(k), Pa2p(k)) 

               ≤  d2q(k) 

      +φ(
D∗(Pa2q(k), Pa2p(k)−1, Pa2p(k)−1,     d2q(k), D

∗(Pa2q(k), Pa2p(k), Pa2p(k))

D∗(Pa2p(k)−1, Pa2p(k)+1, Pa2q(k)+1),                             d2p(k)−1
) 

By using (3.13), lim
k→∞

dn = 0, and continuity and nondecreasing property of φ in each coordinate 

variable, becomes 

∈  ≤  φ(∈, 0, ∈, ∈, 0) 

                                                             ≤  φ(∈, ∈ ,2 ∈, ∈, ∈) 

                                                      = γ(∈) < ∈    (3.14) 
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Letting as k → ∞, we arrive at a  contradiction. Hence  {Pan = bn} is a Cauchy sequence and by 

completeness of  X, we can say that it converges to c ∈   X.  

That is, 

lim
n→∞

Pan = lim
n→∞

bn = c.  (3.15)   

∵the sequences {Ra2q+1 = b2q+1} and {Qa2q = b2q} are subsequences of  

{Pan = bn} andthey have the same limit c. Since R and Q are continuous, we have RQa2q  → Rc and 

QRaq+1 → Qc 

Let D∗(RQa2q, QRa2q+1, QRa2q+1) = D∗(RPa2q−1, QPa2q, QPa2q) 

                                                        ≤  D∗(RP2q−1, PRa2q−1, PRa2q−1) +

                                                             D∗(PRa2q−1, PRa2q−1, PQa2q) +

                                                             D∗(PQa2q, PQa2q, QPa2q)   (3.16) 

By (ii) and the weak commutativity of {P, R} and {P, Q} we obtain 

D∗(RQa2q, QRa2q+1, QRa2q+1) ≤  D
∗(Ra2q−1, Pa2q−1, Pa2q−1) + D

∗(PRa2q, PQa2q, PQa2q) 

+D∗(Pa2q, Pa2q, Qa2q) 

≤ D∗(Ra2q−1, Pa2q−1, Pa2q−1)

+  φ(
D∗(R2a2q−1, Q

2a2q−1, Q
2a2q−1),                D

∗(R2a2q−1, PRa2q−1, PRa2q−1), D
∗(R2a2q−1, PQa2q, PQa2q)

D∗(Q2a2q, PRa2q−1, PRa2q−1),                              D
∗(Q2a2q, PQa2q, PQa2q)

) 

+D∗(Pa2q, Pa2q, Qa2q) 

 

≤ D∗(Ra2q−1, Pa2q−1, Pa2q−1) + 

φ

(

 
 
 
 
 D∗(R2a2q−1, Q

2b2q, Q
2a2q), D

∗(R2a2q−1, R
2a2q−1, RPa2q−1) + D

∗(R2a2q−1, Q
2a2q−1, Q

2a2q−1)

D∗(R2a2q−1, QPa2q, QPa2q) + D
∗(Qa2q, Qa2q, Pa2q),

D∗(Q2a2q, RPa2q−1, RPa2q−1) + D
∗(Ra2q−1, Ra2q−1, Pa2q−1), D

∗(Q2a2q, QPa2q, QPa2q)

+D∗(Qa2q, Pa2q, Pa2q) )

 
 
 
 
 

 

+D∗(Pa2q, Pa2q, Qa2q).                         (3.17) 

If D∗(Rc, Qc, Qc) > 0, then letting as n → ∞ we have 
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D∗(Rc, Qc, Qc) 

≤ D∗(c, c, c) +  φ(
D∗(Rc, Qc, Qc),    D∗(Rc, Qc, Qc) + 0, D∗(Rc, Qc, Qc) + 0

D∗(Qc, Rc, Rc) + 0,                             D∗(Qc, Qc, Qc) + 0
) + 0 

 ≤  (D∗(Rc, Qc, Qc)) < D∗(Rc, Qc, Qc),    

we arrive at a contradiction.  

Therefore Rc = Qc. 

Now, for proving Pc = Rc.We define the inequality 

D∗(RPa2q+1, Pc, Pc)  ≤  D
∗(RPa2q+1, PRa2q+1, PRa2q+1) +  

D∗(Pc, Pc, PRa2q+1).          (3.18) 

by (ii) and the weak commutativity of {P, R}, we obtain 

D∗(RPa2p+1, Pc, Pc)  ≤  D
∗(Ra2q+1, Pa2q+1, Pa2q+1) +

                                                 φ (
D∗(Rc,Qc,QRa2q+1),      D

∗(Rc,Pc,Pc),D∗(Rc,Pc,Pc)

D∗(Qc,Qc,Qc),                      D∗(Qc,Pc,Pc)
) (3.19) 

lettingn → ∞, we get 

D∗(Rc, Pc, Pc) ≤  D∗(c, c, c) + φ(D
∗(Rc,Qc,Qc),D∗(Rc,Pc,Pc),D∗(Rc,Pc,Pc)

D∗(Qc,Pc,Pc),D∗(Qc,Qc,Pc)
) 

= φ(0, D∗(Rc, Pc, Pc), D∗(Rc, Rc, Rc), D∗(Rc, Pc, Pc), D∗(Rc, Pc, Pc)) 

                    ≤  δ(D∗(Rc, Pc, Pc)) 

< D∗(Rc, Pc, Pc)      (3.20) 

Hence by Rc = Pc. ThereforePc = Rc = Qc. Hence we follows that 

D∗(Pc, Pa2q, Paq) 

≤  φ (
D∗(Rc,Qa2q,Qa2q),      D

∗(Rc,Pc,Pc),D∗(Rc,Pa2q,Pa2q)

D∗(Qa2q,Pc,Pc),        D
∗(Qa2q,Pa2q,Pa2q)

)(3.21) 

lettingn → ∞, we have 

D∗(Pc, c, c) ≤  φ(D∗(Rc, c, c), 0, D∗(Rc, c, c), D∗(c, Pc, Pc), 0) 

≤  ω(D∗(Pc, c, c)) < D∗(Pc, c, c), (3.22) 

Pc = c = Rc = Qc. Therefore  c is a common fixed point of P, R, and Q. The unicity of the common 

fixed point is not hard to verify.  
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Corollary 3.2.7 

Let P, T, R, Q, and U be self-mapping of complete D∗ −metric space (X, D∗), and let SR, TH be 

continuous self-mappings on X satisfying the following conditions: 

I) {P, RT} and {P, QU} are weakly commuting pairs such that  

P(X) ⊂ RT(X)⋂QU(X); 

II) There exists a φ ∈ ∅ such that for all a, b ∈ X, 

D∗(Pa, Pb, Pc) ≤  φ (D
∗(TQa,QUb,QUc),D∗(RTa,Pa,Pa),D∗(RTa,Pb,Pb),

D∗(QUb,Pa,Pa),D∗(QUb,Pb,PB)
) (3.23) 

If RT = TR, QU = UQ, PU = UP, and PT = TP, then P, R, T, U, and Q have a unique common fixed 

point in X.  

Proof: 

Using theorem 3.2.6, P, QU, and RT have a unique common fixed point in X.Which implies, there 

exists u ∈ X, such that P(u) = QU(u) = RT(u) = u. 

We show that 

U(u) = u.  By (II) 

We obtain 

D∗(ARa, Aa, Aa) ≤  φ (D
∗(RTTu,QUu,QUu),D∗(RTTu,PTu,PTu),D∗(RTTu,Pu,Pu),

D∗(QUu,PTu,PTu),D∗(QUu,Pu,Pu)
) (3.24) 

Now, if Tu ≠ u,then we get 

D∗(Tu, u, u)         ≤ φ(D∗(Tu, u, u), D∗(Tu, Tu, Tu), D∗(Tu, u, u), D∗(u, Tu, Tu), D∗(u, u, u))

≤ φ(D∗(Tu, u, u), D∗(Tu, u, u), D∗(Tu, u, u), 2D∗(Tu, u, u), D∗(Tu, u, u)) 

< D∗(Tu, u, u),                      (3.25) 

We arrive at a contradiction. Hence Tu = u.  

Hence R(u) = RT(u) = u. Similarly, we have that Q(u) = U(u) = u. 

Corollary 3.2.8 

 Let Ei be a sequence self-mapping of complete D∗ −metric space (X, D∗)for i ∈  ℕ, and let 

R, Q be continuous self-mappings on X satisfying the following conditions: 

i) ∃i0  ∈  ℕ such that {Ei0 , R} and {Pi0 , Q} are weakly commuting pairs such that Ei0(X) ⊂

R(X)⋂Q(X); 
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ii) ∃φ ∈  ∅ and i, j, k ∈  ℕ such that for all a, b ∈ X, 

D∗(Eia, Ejb, Ekc) ≤  φ (
D∗(Ra,Qb,Qc),D∗(Ra,Eia,Pia),D

∗(Ra,Pjb,Ejc),

D∗(Qb,Eia,Eia),D
∗(Qb,Pjb,Ejb)

)(3.26) 

In this case Ei, S and T have a unicity of common fixed point in X for each i ∈  ℕ 

Proof : 

Using the theorem 3.2.6, let   R, Q, and Ei0  have a unicity of common fixed point in X for some i =

j = k =  i0  ∈  ℕ. Then, there exists a unique u ∈ X such that  

R(u) = Q(u) =  Ei0(u) = u.   (3.27) 

 

If there exists i ∈ ℕ such that i ≠ i0 andj = i0, k = i0. Then we obtain 

D∗(Eiu, Ei0u, Ei0u) ≤       φ (
D∗(Ru, Qu, Qu), D∗(Ru, Eiu, Eiu), D

∗(Ru, Ei0u, Ei0u),

D∗(Qu, Piu, Eiu),    D
∗(Qu, Ei0u, Ei0u)

).   (3.28) 

Now  ifEiu ≠ u, then we obtain 

D∗(Eiu, u, u) ≤  φ (
D∗(u,u,u),D∗(u,Eiu,Eiu),D

∗(u,u,u),
D∗(u,Eiu,Eiu),D

∗(Eiu,u,u)
)  (3.29) 

< D∗(Eiu, u, u), 

We arrive at a contradiction. Hence for every i ∈  ℕ it follows that Ei(u) = u for every i ∈  ℕ. 
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