

# Study the effect of acidity function on the kinetic of the two complexes formation produced from the reaction of salicylic acid with two diazotized reagents.

<sup>1</sup>Doctor Mohammad Mahmoud Hussein Younes Al-Niemi

#### <sup>1</sup>Assistant Professor

<sup>2</sup>Department of Chemistry, College of Education for Pure Sciences, University of Mosul, Mosul, Iraq.

#### Abstract

The spectrophotometric method was used to the kinetics study of the formation reactions for colored drug complexes derived from electron-donating salicylic acid drug with the two diazotized reagents of (para-nitro aniline) and (sulfanilic acid sodium salt) at the acidic functions (pH4.9, pH7.1 and pH9.3) that accept these electrons at different acidic media The optimal concentration ratios of the two drug complexes with the two reagents were (1:10) for (drug:reagent), respectively. Experimentally, the kinetics of the formation of each drug complex was studied under its optimum conditions and at the three pH levels. It was proved that drug complex formation followed a pseudo first order kinetic with respect to drug. The obtained results were discussed with an appropriate explanation for each one.

Keywords: drug complexes ; kinetic parameters ; pseudo first order kinetic ; diazotized reagent ; Spectrophotometry ; half live tim

#### Introduction

The attention of many researchers has recently turned to the preparation and study of a type of complex known as (donor - acceptor) complexes using absorption spectra in the visible and ultraviolet regions (UV- Visible spectra) of the spectrum<sup>(1-2)</sup> because of this type of complexes of great importance, especially in Medical and Biology fields. The ease and accuracy of the spectral method<sup>(1)</sup> and the availability of its requirements in many laboratories is what encouraged researchers to apply it in determining the stoichiometry of different colored complexes, and then determine the stability constants of these resulting complexes and the factors affecting them by determining the thermodynamic parameters for them at different temperatures As well as kinetic parameters to its activation. The diazonium salts<sup>(3-8)</sup> prepared from the reaction of amines with nitrous acid by treating sodium nitrite with a solution of amine in hydrochloric acid at (0-5°C) are important compounds in the manufacture of many organic compounds, including the azo imine complexes. As in the following equation:  $ArNH_2 + HNO_2 + HX \rightarrow ArN + _2X - + 2H_2O$ 

Salicylic acid<sup>(9-14)</sup> is a colorless aromatic carboxylic acid that is naturally extracted from some plants such as white willow and meadowsweet. Warts and boils and useful in fighting acne is the main compound of several well-known drugs, especially aspirin. The chemical structure of salicylic acid has

the formula C6H4(OH)COOH, where it is an (OH) group ortho to a carboxyl group. It is also known as 2hydroxybenzenecarboxylic acid. It is poorly soluble in water (0.2 ml g/100 H<sub>2</sub>O at 20°C)<sup>(9-14)</sup>. In 2005 AD, the researcher Olakunle<sup>(15)</sup> and his group studied the kinetics of thermal dissociation of the ion (4-Carboxyl-2,6- dinitrobenzene diazonium) (CDNBD) by estimating the small amounts of this ion after each time period by means standard reagent as a sample for repeating two azo groups (diazo). This is in addition to estimating the rate constants for the thermal decomposition process graphically. Another group of researchers<sup>(16)</sup> has studied the kinetics of the diazotization reactions of benzotriazole as an important organic compound in the main industrial applications. The results confirmed that the kinetic equation for the above reaction is of the first order for each of ortho-phenylene diamine and nitrous acid. The rate constant is a function of temperature. As for our current kinetic study, it includes the kinetics of the formation of the two complexes resulting from the reaction of the electron-donating (salicylic acid drug) with the two diazotized reagents, which are (diazotized sulfanilic acid sodium salt) and (diazotized para-nitro aniline) that accept these electrons, and the determination of the rate of the mentioned reaction, its rate constant(k), and the half-life time( $t_{1/2}$ ) at the three pH functions (pH4.9, pH7.1 and pH9.3) with an indication of the effect of the pH function on them. What was mentioned above is a small part of what is contained in the literature of this type of studies, and if we limit ourselves to mentioning this very brief number of these studies is due to the narrowness of the field with a certain number of research pages, and we have limited ourselves to mentioning what is recent from them, and that there are many sources It can be consulted in the literature for those interested in this type of study

#### **Experimental part**

#### Chemicals:

#### **Chemicals:**

The chemicals used during the research were supplied by Switzerland Fluka, British BDH and Spanish PRS companies: sodium hydroxide, hydroxylamine hydrochloride, ethanol, sodium carbonate, sodium nitrite, hydrochloric acid, sulfanilic acid sodium salt, and para-nitro-aniline. While Salicylic acid drug Got from the Nineveh Drug Company (NDI). All compounds were prepared in a standard manner similar to a previous study

(17-18)

#### 1- Instruments:

#### a- UV-Visible Spectrophotometers:

1-A single beam Spectrophotometer instrument manufactured by the British company (Cecil) (Cambridge, England) model (CE 1011/1000) in the range of wavelengths (325-1000nm.).

2-A double beam Spectrophotometer instrument containing a computer made by the Japanese company (Shimadzu), model (UV-1800) produced in 2004 to check the value of ( $\lambda_{max}$ ) for the complexes under study and draw the different electronic spectra in the water solvent in the range between (190-1100nm.).

The cells used above were: glass in the visible region and quartz in the invisible region. **b- pH-meter** : Made by (JENWAY) Company, Model (3510).

- c- Water bath : Model (D3165) type (Hanigsen) manufactured by (KOTTERMANN) company.
- 2- Preparation of the aqueous drug solution of salicylic acid: The drug was obtained pure in the form of a white crystalline powder from the Nineveh Drug Company, and it was used directly to prepare its aqueous drug solution at a concentration of (10<sup>-3</sup>M), to be subsequently reacted with the aqueous solutions of two diazotized reagents (paranitro aniline) and (sulfanilic acid sodium salt).
- **3- Two diazotized reagent solutions:** The two diazotized reagent solutions were prepared at a concentration of (2x10<sup>-3</sup>M) from each of the diazonium salt derived from sulfanilic acid and derived from para-nitro aniline in a standard manner <sup>(3)</sup>, and was applied spontaneously each time.
- 4- Basic solution of Na<sub>2</sub>CO<sub>3</sub>: (0.1M) of Na<sub>2</sub>CO<sub>3</sub> Solutions were prepared from sodium carbonate as a base by standard methods <sup>(17-18)</sup>, and these solutions were used to control <sup>(16)</sup> the acidic function of the drug complexes at the required values (pH4.9, pH7.1 and pH9.3). Experimentally, different volumes of sodium carbonate solution were added to the two reagent and drug solutions until the required acidity(pH) was obtained, because it was expected that a portion of the carbonate salt (Na<sub>2</sub>CO<sub>3</sub>) would convert to carbonic acid due to the presence of hydrochloric acid (HCl) with the reagents solution. Thus, a mixture of weak carbonic acid and its salt is created, which acts as a buffer solution to adjust the pH.
- 5- Preparation of drug complexes solutions: The aqueous solutions of the two salicylic acid complexes were prepared under optimal conditions previously obtained, by mixing appropriate quantities of (10<sup>-3</sup>M) from the diazotized reagent and (0.1M) from the carbonate salt (Na<sub>2</sub>CO<sub>3</sub>) with (0.2ml) from (10<sup>-3</sup>M) from the drug solution at a temperature of (25°C) to obtain the required acidic functions : (pH4.9, pH7.1 and pH9.3).
- 6- **Kinetic study:** The mixture of the solutions mentioned above was fixed each time at the selected temperature (25°C). As the aqueous solutions of the two drug complexes were prepared according to the optimum order of addition, as shown in Table (2). The absorbance of each kinetic complex was followed at its optimum wavelength and until the end of the reaction or reaching its maximum value ( $\lambda_{max}$ ). The kinetic equation was applied for the pseudo-first-order reaction, and the rate constant(k), half-life(t<sub>1/2</sub>) as well as other activation parameters were calculated.
- 7-

#### Table(1): Numbers, symbols, and names for the two prepared drug complexes.

| No. of  | Symbol of | Name of Complex Components                                   |
|---------|-----------|--------------------------------------------------------------|
| Complex | Complex   |                                                              |
| 1.      | SSASS     | Salicylic acid drug + Diazotized Sulfanilic Acid Sodium Salt |
| 2.      | SPNA      | Salicylic Acid Drug + Diazotized para-Nitro Aniline          |

| Symbol<br>of<br>Complex | Or    | Optimum<br>Wavelength<br>(nm.)                                               |     |
|-------------------------|-------|------------------------------------------------------------------------------|-----|
|                         | pH4.9 | (0.2ml)Salicylic acid+(2ml)Reagent+(0.05ml)Na₂CO₃.                           | 398 |
| SSASS                   | pH7.1 | (0.2ml)Salicylic acid+(2ml)Reagent+(0.15ml)Na <sub>2</sub> CO <sub>3</sub> . | 392 |
|                         | pH9.3 | (0.2ml)Salicylic acid+(2ml)Reagent+(0.25ml)Na <sub>2</sub> CO <sub>3</sub> . | 383 |
|                         | pH4.9 | (0.2ml)Salicylic acid+(0.15ml)Na <sub>2</sub> CO <sub>3</sub> +(2ml)Reagent. | 405 |
| SPNA                    | pH7.1 | (2ml)Reagent+(0.3ml)Na <sub>2</sub> CO <sub>3</sub> +(0.2ml)Salicylic acid.  | 404 |
|                         | pH9.3 | (0.6ml)Na <sub>2</sub> CO <sub>3</sub> +(0.2ml)Salicylic acid+(2ml)Reagent.  | 393 |

# Table(2): The final optimum conditions for the two prepared drug complexes are under study at a temperature of (25°C) and at (pH4.9, pH7.1 and pH9.3).

### **Results and Discussion**

The researcher relied on the best optimal conditions for the formation of the two complexes derived from the interaction of the salicylic acid drug once with the diazotized para-nitro aniline reagent and the other with the sulfanilic acid sodium salt reagent that included: the best primitive wavelength, the optimum volume of the reagent, the optimum concentration of the base, the optimum order of addition, Hence, the final optimum wavelength ( $\lambda_{max}$ ) of the complex under optimal conditions, as mentioned in our previous study <sup>(18-19)</sup>. In it, we confirmed that the UV and visible spectrum of the two complexes as shown in Table(1) showed spectral bands at the value of ( $\lambda_{max}$ ), and as shown in Table(2). These results confirm that there are no spectral interference between the resulting complex and the reactants. Accordingly, this kinetic spectroscopy study was based on the kinematic equation model of the first order in following up the formation of the formed drug complex, by following up the absorption of the resulting complex to a time exceeding (100) minutes. And as shown in Table(3) and Figure(1).

# Table(3): Monitoring complex absorbance (SSASS) versus time at a temperature of (25°C), at (pH4.9, pH7.1 and pH9.3), and at the optimum wavelength for each of pH.

| Time<br>(min) | Absorbance               |                          |                          | $\mathbf{A}_{\infty}	ext{-}\mathbf{A}_{\mathbf{t}}$ |       |       | $\mathbf{A}_{\infty}/(\mathbf{A}_{\infty}\cdot\mathbf{A}_{t})$ |       |       | $\mathrm{Ln} \left\{ \mathbf{A}_{\infty} / (\mathbf{A}_{\infty} - \mathbf{A}_{t}) \right\}$ |       |       |
|---------------|--------------------------|--------------------------|--------------------------|-----------------------------------------------------|-------|-------|----------------------------------------------------------------|-------|-------|---------------------------------------------------------------------------------------------|-------|-------|
|               | рН4                      | pH7.1,                   | рН9.3,                   |                                                     |       |       |                                                                |       |       |                                                                                             |       |       |
|               | $\lambda_{max} = 398$ nm | $\lambda_{max} = 392$ nm | $\lambda_{max} = 383$ nm | рН4.9                                               | pH7.1 | рН9.3 | рН4.9                                                          | pH7.1 | рН9.3 | рН4.9                                                                                       | pH7.1 | рН9.3 |
| 0             | 0.000                    | 0.000                    | 0.000                    | 0.350                                               | 0.395 | 0.470 | 1.00                                                           | 1.00  | 1.00  | 0.000                                                                                       | 0.000 | 0.000 |
| 2             | 0.011                    | 0.027                    | 0.036                    | 0.339                                               | 0.368 | 0.434 | 1.03                                                           | 1.07  | 1.08  | 0.032                                                                                       | 0.071 | 0.080 |
| 5             | 0.057                    | 0.066                    | 0.072                    | 0.293                                               | 0.329 | 0.398 | 1.19                                                           | 1.20  | 1.18  | 0.178                                                                                       | 0.183 | 0.166 |
| 10            | 0.079                    | 0.111                    | 0.101                    | 0.271                                               | 0.284 | 0.369 | 1.29                                                           | 1.39  | 1.27  | 0.256                                                                                       | 0.330 | 0.242 |
| 15            | 0.143                    | 0.144                    | 0.141                    | 0.207                                               | 0.251 | 0.329 | 1.69                                                           | 1.57  | 1.43  | 0.525                                                                                       | 0.453 | 0.357 |
| 20            | 0.199                    | 0.170                    | 0.173                    | 0.151                                               | 0.225 | 0.297 | 2.32                                                           | 1.76  | 1.58  | 0.841                                                                                       | 0.563 | 0.459 |
| 25            | 0.202                    | 0.192                    | 0.222                    | 0.148                                               | 0.203 | 0.248 | 2.36                                                           | 1.95  | 1.90  | 0.861                                                                                       | 0.666 | 0.639 |
| 30            | 0.233                    | 0.214                    | 0.266                    | 0.117                                               | 0.181 | 0.204 | 2.99                                                           | 2.18  | 2.30  | 1.096                                                                                       | 0.780 | 0.835 |
| 35            | 0.241                    | 0.230                    | 0.298                    | 0.109                                               | 0.165 | 0.172 | 3.21                                                           | 2.39  | 2.73  | 1.167                                                                                       | 0.873 | 1.005 |
| 40            | 0.266                    | 0.248                    | 0.333                    | 0.084                                               | 0.147 | 0.137 | 4.17                                                           | 2.69  | 3.43  | 1.427                                                                                       | 0.988 | 1.233 |
| 45            | 0.289                    | 0.261                    | 0.361                    | 0.061                                               | 0.134 | 0.109 | 5.74                                                           | 2.95  | 4.31  | 1.747                                                                                       | 1.081 | 1.461 |
| 50            | 0.299                    | 0.275                    | 0.388                    | 0.051                                               | 0.120 | 0.082 | 6.86                                                           | 3.29  | 5.73  | 1.926                                                                                       | 1.191 | 1.746 |
| 55            | 0.309                    | 0.288                    | 0.399                    | 0.041                                               | 0.107 | 0.071 | 8.54                                                           | 3.69  | 6.62  | 2.144                                                                                       | 1.306 | 1.890 |
| 60            | 0.319                    | 0.301                    | 0.415                    | 0.031                                               | 0.094 | 0.055 | 11.29                                                          | 4.20  | 8.55  | 2.424                                                                                       | 1.436 | 2.145 |
| 65            | 0.322                    | 0.314                    | 0.423                    | 0.028                                               | 0.081 | 0.047 | 12.50                                                          | 4.88  | 10.00 | 2.526                                                                                       | 1.584 | 2.303 |
| 70            | 0.329                    | 0.326                    | 0.433                    | 0.021                                               | 0.069 | 0.037 | 16.67                                                          | 5.72  | 12.70 | 2.813                                                                                       | 1.745 | 2.542 |
| 75            | 0.334                    | 0.337                    | 0.445                    | 0.016                                               | 0.058 | 0.025 | 21.88                                                          | 6.81  | 18.80 | 3.085                                                                                       | 1.918 | 2.934 |
| 80            | 0.339                    | 0.348                    | 0.454                    | 0.011                                               | 0.047 | 0.016 | 31.82                                                          | 8.40  | 29.38 | 3.460                                                                                       | 2.129 | 3.380 |

| 85  | 0.344 | 0.358 | 0.465 | 0.006 | 0.037 | 0.005 | 58.33 | 10.68 | 94.00 | 4.066 | 2.368 | 4.543 |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 90  | 0.345 | 0.367 | 0.470 | 0.005 | 0.028 | 0.000 | 70.00 | 14.11 | œ     | 4.248 | 2.647 | -     |
| 95  | 0.346 | 0.376 | 0.466 | 0.004 | 0.019 | 0.004 | 87.50 | 20.79 | 117.5 | 4.472 | 3.034 | 4.766 |
| 100 | 0.347 | 0.384 | 0.462 | 0.003 | 0.011 | 0.008 | 116.7 | 35.91 | 58.75 | 4.759 | 3.581 | 4.073 |
| 105 | 0.350 | 0.390 | 0.459 | 0.000 | 0.005 | 0.011 | 8     | 79.00 | 42.73 | -     | 4.369 | 3.755 |
| 110 | 0.348 | 0.395 | 0.444 | 0.002 | 0.000 | 0.026 | 175.0 | œ     | 18.08 | 5.165 | -     | 2.895 |
| 115 | 0.344 | 0.391 | 0.432 | 0.006 | 0.004 | 0.038 | 58.33 | 98.75 | 12.37 | 4.066 | 4.593 | 2.515 |
| 120 | 0.341 | 0.382 | 0.412 | 0.009 | 0.013 | 0.058 | 38.89 | 30.38 | 8.10  | 3.661 | 3.414 | 2.092 |



Figure(1): Kinetic of complex time at a temperature of (25°C), at at the optimum wavelength for Figure(1) shows that there is a absorbances of the complex (SSASS) that there was a sudden increase in absorbances after (105) minutes complex at (pH4.9), after (110) the drug complex at (pH7.1), and absorbance (SSASS) versus (pH4.9, pH7.1 and pH9.3), and each of pH. direct relationship between the with time. It was also noticed the aforementioned after the formation of the drug minutes after the formation of after (90) minutes after the formation of the drug complex at (pH9.3), and then the absorption to a stable state may be due to the completion of complex formation and the termination of the reaction. And the latter does not affect the values of ( $\lambda_{max}$ ) of the complex formed after these times, due to the end of the reaction, and this is confirmed by the values of the half-live times of its reactions, which were: (15.97min. at pH4.9), (23.11min. at pH7.1), (17.87min. at pH9.3).

In this study, we used the integration method to follow the kinetics of complex formation reactions. When applying the following pseudo first order equation to all the obtained kinetic results:  $Ln{A_{\infty}/(A_{\infty}-A_{t})} = k1.t$ ------(1) And by plotting  $Ln{A_{\infty}/(A_{\infty}-A_t)}$  graph against time (in minutes), we got good straight lines at all pH functions with values (R<sup>2</sup>) between (0.9018-0.9736) with slopes equal to the velocity constants (k). ) Their interactions, the latter indicates that the drug complex formation reaction is of the first pseudo-first order relative to the drug. From them, the velocity constants of the complex formed at the three acidic functions and at a temperature (25°C) were calculated, which enabled us to calculate the values of its half-lives (t<sub>1/2</sub>), which were calculated from the following second equation: (15.97min. at pH4.9), (23.11 min. at pH7.1), (17.87min. at pH9.3).

## t<sub>1/2</sub>=Ln2/k<sub>1</sub>.....(2)

These results were identical to previous studies <sup>(6-7)</sup> on the kinetics of the reaction of the formation of Azo complexes.

| ival. Val. | Allog P Lag                           | and Chila Di       | rrr.0/51.00       |      |      |      |                                     |      |        |                         |      |      |
|------------|---------------------------------------|--------------------|-------------------|------|------|------|-------------------------------------|------|--------|-------------------------|------|------|
| Time       | 1000000000000000000000000000000000000 |                    |                   | A~-  |      |      | $A_{\rm cr}/(A_{\rm cr}-A_{\rm t})$ |      |        | $\ln \{A_m/(A_m-A_t)\}$ |      |      |
| (min)      | Absorbance                            |                    |                   | At   |      |      |                                     |      |        |                         |      |      |
|            | pH4.9,                                | pH7.1,             | - nU0 2           |      |      |      |                                     |      |        |                         |      |      |
|            | λ <sub>max</sub> =                    | λ <sub>max</sub> = | рн9.3,            | рН   | рН   | рΗ   | рН                                  | рΗ   | рН     | рН                      | рΗ   | рΗ   |
|            | 405                                   | 404                | $\lambda_{max} =$ | =    | =    | =    | =                                   | =    | =      | =                       | =    | =    |
|            | nm                                    | nm                 | 393 nm            | 4.9  | 7.1  | 9.3  | 4.9                                 | 7.1  | 9.3    | 4.9                     | 7.1  | 9.3  |
| 0          | 0.000                                 | 0.000              | 0.000             | 0.30 | 0.40 | 0.25 | 1 00                                | 1 00 | 1 00   | 0.00                    | 0.00 | 0.00 |
| 0          | 0.000                                 | 0.000              | 0.000             | 5    | 1    | 5    | 1.00                                | 1.00 | 1.00   | 0                       | 0    | 0    |
| 2          | 0.013                                 | 0.017              | 0.034             | 0.29 | 0.38 | 0.22 | 1 0/                                | 1 0/ | 1 15   | 0.04                    | 0.04 | 0.14 |
| 2          | 0.015                                 | 0.017              | 0.054             | 2    | 4    | 1    | 1.04                                | 1.04 | 1.15   | 4                       | 3    | 3    |
| 5          | 0.060                                 | 0.077              | 0 132             | 0.24 | 0.32 | 0.12 | 1 24                                | 1 24 | 2 07   | 0.21                    | 0.21 | 0.72 |
|            | 0.000                                 | 0.077              | 0.152             | 5    | 4    | 3    | 1.27                                | 1.27 | 2.07   | 9                       | 3    | 9    |
| 10         | 0 133                                 | 0 135              | 0 202             | 0.17 | 0.26 | 0.05 | 1 77                                | 1 51 | 4 81   | 0.57                    | 0.41 | 1.57 |
| 10         | 0.155                                 | 0.155              | 0.202             | 2    | 6    | 3    | 1.77                                | 1.51 | 4.01   | 3                       | 0    | 1    |
| 15         | 0 177                                 | 0 180              | 0 231             | 0.12 | 0.22 | 0.02 | 2 38                                | 1 81 | 10.63  | 0.86                    | 0.59 | 2.36 |
|            | 0.177                                 | 0.100              | 0.231             | 8    | 1    | 4    | 2.50                                | 1.01 | 10.05  | 8                       | 6    | 3    |
| 20         | 0.202                                 | 0.205              | 0.244             | 0.10 | 0.19 | 0.01 | 2.96                                | 2.05 | 23.18  | 1.08                    | 0.71 | 3.14 |
|            |                                       | 0.200              |                   | 3    | 6    | 1    |                                     |      |        | 6                       | 6    | 3    |
| 25         | 0.236                                 | 0.241              | 0.251             | 0.06 | 0.16 | 0.00 | 4.42                                | 2.51 | 63.75  | 1.48                    | 0.91 | 4.15 |
|            |                                       |                    |                   | 9    | 0    | 4    |                                     |      |        | 6                       | 9    | 5    |
| 30         | 0.261                                 | 0.265              | 0.255             | 0.04 | 0.13 | 0.00 | 6.93                                | 2.95 | $\sim$ | 1.93                    | 1.08 | -    |
|            |                                       |                    |                   | 4    | 6    | 0    |                                     |      |        | 6                       | 1    |      |
| 35         | 0.271                                 | 0.272              | 0.248             | 0.03 | 0.12 | 0.00 | 8.97                                | 3.11 | 36.43  | 2.19                    | 1.13 | 3.59 |
|            | _                                     | _                  |                   | 4    | 9    | 7    |                                     | _    |        | 4                       | 4    | 5    |
| 40         | 0.279                                 | 0.288              | 0.241             | 0.02 | 0.11 | 0.01 | 11.7                                | 3.55 | 18.21  | 2.46                    | 1.26 | 2.90 |
|            |                                       |                    |                   | 6    | 3    | 4    | 3                                   |      |        | 2                       | 7    | 2    |
| 45         | 0.288                                 | 0.309              | 0.239             | 0.01 | 0.09 | 0.01 | 17.9                                | 4.36 | 15.94  | 2.88                    | 1.47 | 2.76 |
|            |                                       |                    |                   | 7    | 2    | 6    | 4                                   |      |        | 7                       | 2    | 9    |

Table(4): Monitoring complex absorbance (SPNA) versus time at a temperature of (25°C), at (pH4.9, pH7.1 and pH9.3), and at the optimum wavelength for each of pH.

| 50                                          | 0.295                                                                                                                                                       | 0.321                                                                                                       | 0.231                                                                           | 0.01                                                                                                                          | 0.08                                                                                                                                                                                                                                                                | 0.02                                                                                                               | 30.5                                                        | 5.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.41                                                                                                       | 1.61                                                                                  | 2.36                                                                               |
|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                             |                                                                                                             |                                                                                 | 0                                                                                                                             | 0                                                                                                                                                                                                                                                                   | 4                                                                                                                  | 0<br>42 F                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8                                                                                                          | 2                                                                                     | 3                                                                                  |
| 55                                          | 0.298                                                                                                                                                       | 0.333                                                                                                       | 0.228                                                                           | 0.00                                                                                                                          | 0.06<br>8                                                                                                                                                                                                                                                           | 0.02                                                                                                               | 43.5                                                        | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.77<br>4                                                                                                  | 1.77<br>A                                                                             | 2.24<br>5                                                                          |
|                                             |                                                                                                                                                             |                                                                                                             |                                                                                 | 0.00                                                                                                                          | 0.05                                                                                                                                                                                                                                                                | ,                                                                                                                  | /                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                            | 1.95                                                                                  | 2.04                                                                               |
| 60                                          | 0.305                                                                                                                                                       | 0.344                                                                                                       | 0.222                                                                           | 0                                                                                                                             | 7                                                                                                                                                                                                                                                                   | 3                                                                                                                  | 8                                                           | 7.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                          | 1                                                                                     | 5                                                                                  |
| 65                                          | 0.007                                                                                                                                                       | 0.054                                                                                                       | 0.214                                                                           | 0.00                                                                                                                          | 0.04                                                                                                                                                                                                                                                                | 0.04                                                                                                               | 38.1                                                        | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.64                                                                                                       | 2.14                                                                                  | 1.75                                                                               |
| 65                                          | 0.297                                                                                                                                                       | 0.354                                                                                                       | 0.211                                                                           | 8                                                                                                                             | 7                                                                                                                                                                                                                                                                   | 4                                                                                                                  | 3                                                           | 8.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                                                                                                          | 4                                                                                     | 7                                                                                  |
| 70                                          | 0 295                                                                                                                                                       | 0 358                                                                                                       | 0.205                                                                           | 0.01                                                                                                                          | 0.04                                                                                                                                                                                                                                                                | 0.05                                                                                                               | 30.5                                                        | 0 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.41                                                                                                       | 2.23                                                                                  | 1.62                                                                               |
| 70                                          | 0.233                                                                                                                                                       | 0.558                                                                                                       | 0.205                                                                           | 0                                                                                                                             | 3                                                                                                                                                                                                                                                                   | 0                                                                                                                  | 0                                                           | 5.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8                                                                                                          | 3                                                                                     | 9                                                                                  |
| 75                                          | 0.288                                                                                                                                                       | 0.366                                                                                                       | 0.201                                                                           | 0.01                                                                                                                          | 0.03                                                                                                                                                                                                                                                                | 0.05                                                                                                               | 17.9                                                        | 11.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.88                                                                                                       | 2.43                                                                                  | 1.55                                                                               |
|                                             |                                                                                                                                                             |                                                                                                             |                                                                                 | 7                                                                                                                             | 5                                                                                                                                                                                                                                                                   | 4                                                                                                                  | 4                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7                                                                                                          | 9                                                                                     | 2                                                                                  |
| 80                                          | 0.284                                                                                                                                                       | 0.371                                                                                                       | 0.198                                                                           | 0.02                                                                                                                          | 0.03                                                                                                                                                                                                                                                                | 0.05                                                                                                               | 14.5                                                        | 13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.67                                                                                                       | 2.59                                                                                  | 1.49                                                                               |
|                                             |                                                                                                                                                             |                                                                                                             |                                                                                 | 1                                                                                                                             | 0                                                                                                                                                                                                                                                                   | /                                                                                                                  | 2                                                           | /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6                                                                                                          | 3                                                                                     | 8                                                                                  |
| 85                                          | 0.277                                                                                                                                                       | 0.377                                                                                                       | 0.191                                                                           | 0.02<br>8                                                                                                                     | 0.02                                                                                                                                                                                                                                                                | 0.06                                                                                                               | 10.8                                                        | 10.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.38<br>g                                                                                                  | 2.81                                                                                  | 1.38                                                                               |
|                                             |                                                                                                                                                             |                                                                                                             |                                                                                 | 0                                                                                                                             | -                                                                                                                                                                                                                                                                   | -                                                                                                                  | 5                                                           | <u>+</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                                                                                          | U                                                                                     | 2                                                                                  |
|                                             | $\begin{array}{c} y=0.0648x \\ R^{2}=0.99 \\ 3.0 \\ SPNA at pH4.9 \\ t_{1/2}=10.7min \\ 2.0 \\ Ln{A_m/(A_m-A_t)} \\ 1.0 \\ \end{array}$                     |                                                                                                             |                                                                                 | R2=                                                                                                                           | =0.9924                                                                                                                                                                                                                                                             | 1                                                                                                                  |                                                             | 4 0 R <sup>2</sup> =0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .9956                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                                                       |                                                                                    |
|                                             | 3.0 SPNA<br>t <sub>1/2</sub> =<br>2.0<br>Ln{A/(A<br>1.0                                                                                                     | at pH4.9<br>10.7min<br>A <sub>t</sub> )}                                                                    | A.M.                                                                            | 3 SP<br>tut<br>2<br>Lin{A/(/                                                                                                  | NA at pH7.1<br>2≡22.15min.                                                                                                                                                                                                                                          | A A A A A A A A A A A A A A A A A A A                                                                              |                                                             | 3.0 SPN/<br>3.0 tuz≡<br>Ln {A∞/(A<br>2.0<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | A at pH9.3<br>4.31min.<br>A <sub>t</sub> }                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                            |                                                                                       |                                                                                    |
|                                             | 3.0 SPNA<br>t <sub>1/2</sub> =:<br>2.0<br>Ln{A=/(A=-<br>1.0<br>0.0                                                                                          | at pH4.9<br>10.7min<br>A <sub>t</sub> )}<br>20<br>Time(m                                                    | 40 60                                                                           | 3 <b>SP</b><br>t <sub>1</sub><br>2<br>Ln {A <sub>m</sub> /(/<br>1<br>0<br>0                                                   | NA at pH7.1<br>2=22.15min.<br>A∞-A, ) A∞-A                                                                                                                                                                                                                          | 100<br>me(min.)                                                                                                    | 150                                                         | 3.0 <b>SPN/</b><br>3.0 <b>Lu {A/{A</b><br>2.0<br>1.0<br>0.0 <b>0</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A at pH9.3<br>4.31min.<br>(ar-At)}<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20<br>ime(min.)                                                                                            | 30                                                                                    |                                                                                    |
| 90                                          | 3.0 SPNA<br>t <sub>1/2</sub> =:<br>2.0 Ln{A =/(A=-<br>1.0 0.0 0                                                                                             | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381                                                       | 40 60<br>iin.)<br>0.188                                                         | 3 SP <br>txz<br>2<br>Ln {A=/(/<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                        | NA at pH7.1<br>22.15min.<br>A=-A, )<br>50<br>Ti<br>0.02<br>0                                                                                                                                                                                                        | 100<br>me(min.)<br>0.06<br>7                                                                                       | 150                                                         | 3.0 SPNJ<br>3.0 Lu {a_/(A<br>2.0 0<br>0.0 0<br>0<br>20.0 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A at pH9.3<br>4.31min.<br>(ar-At)}<br>10<br>10<br>3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>ime(min.)<br>1.62<br>6                                                                               | <sup>30</sup><br>2.99<br>8                                                            | 1.33                                                                               |
| 90                                          | 3.0 SPNA<br>t <sub>1/2</sub> =<br>2.0 Ln{A/(A<br>1.0 0.0 0<br>0.245                                                                                         | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381                                                       | 40 60<br>in.)<br>0.188                                                          | 3 SPI<br>tuz<br>2<br>Ln {A/(/<br>1<br>0<br>0<br>0<br>0                                                                        | NA at pH7.1<br>22.15min.<br>AA, )<br>50 Ti<br>0.02<br>0<br>0.01                                                                                                                                                                                                     | 100<br>me(min.)<br>0.06<br>7<br>0.06                                                                               | 150<br>5.08                                                 | 3.0 spn/<br>3.0 superior spn/<br>2.0 spn/<br>1.0 spn/<br>1.0 spn/<br>1.0 spn/<br>2.0 spn/<br>1.0 spn/<br>2.0 spn/<br>1.0 spn/<br>2.0 spn/<br>2.0 spn/<br>3.0 | A at pH9.3<br>4.31min.<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20<br>ime(min.)<br>1.62<br>6<br>1.60                                                                       | 30<br>2.99<br>8<br>3.28                                                               | 1.33<br>7<br>1.30                                                                  |
| 90<br>95                                    | 3.0 <b>PNA</b><br>3.0 <b>SPNA</b><br>t <sub>1/2</sub> =<br>2.0 <b>Ln{A //(A // // // // // // // /</b>                                                      | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386                                              | 40 60<br>in.)<br>0.188<br>0.186                                                 | 3 SPI<br>tur<br>2 Lm {A-///<br>1 0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0                             | <sup>50</sup> Ti<br>0.02<br>0<br>0.01<br>5                                                                                                                                                                                                                          | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9                                                                          | 150<br>5.08<br>5.00                                         | spn/<br>3.0<br>Ln {A/(A<br>2.0<br>1.0<br>0.0<br>0<br>20.0<br>5<br>26.7<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A at pH9.3<br>4.31min.<br>At}}<br>10<br>T<br>3.81<br>3.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9                                                                  | 30<br>2.99<br>8<br>3.28<br>6                                                          | 1.33<br>7<br>1.30<br>7                                                             |
| 90<br>95<br>100                             | 3.0 SPNA<br>t <sub>1/2</sub> =:<br>2.0 Ln{A =/(A=-<br>1.0 0.0 0<br>0.245<br>0.244<br>0.233                                                                  | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389                                     | 40 60<br>in.)<br>0.188<br>0.186<br>0.181                                        | 3 SP <br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                   | <sup>50</sup> Ti<br>0.02<br>0<br>0.01<br>5<br>0.01                                                                                                                                                                                                                  | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07                                                                  | 150<br>5.08<br>5.00<br>4.24                                 | 3.0 <b>SPNJ</b><br>3.0 <b>Ln {A</b> /(A<br>2.0 <b>D</b><br>1.0 <b>D</b><br>0.0 <b>D</b><br>20.0 <b>D</b><br>20.0 <b>D</b><br>20.0 <b>D</b><br>26.7 <b>S</b><br>33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A at pH9.3<br>4.31min.<br>(ar-At)}<br>10<br>10<br>3.81<br>3.70<br>3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44                                                          | 30<br>2.99<br>8<br>3.28<br>6<br>3.50                                                  | 1.33<br>7<br>1.30<br>7<br>1.23                                                     |
| 90<br>95<br>100                             | 3.0 <b>PNA</b><br>3.0 <b>SPNA</b><br>t <sub>1/2</sub> =<br>2.0 <b>Ln{A=/(A=-1)</b><br>0.0 0<br>0.245<br>0.244<br>0.233                                      | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389                                     | 40 60<br>in.)<br>0.188<br>0.186<br>0.181                                        | 3 SPI<br>tuz<br>2<br>tu {A/(/<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0  | NA at pH7.1<br>22.15min.<br>3A,<br>50 Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0 01                                                                                                                                                                             | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07                                                     | 150<br>5.08<br>5.00<br>4.24                                 | 3.0 <b>SPNJ</b><br>3.0 <b>Ln {A=/(A</b><br>2.0 <b>1.0</b><br>0.0 <b>0</b><br>20.0 <b>5</b><br>26.7 <b>3</b><br>33.4 <b>2</b><br>26.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A at pH9.3<br>4.31min.<br>(At)}<br>10<br>3.81<br>3.70<br>3.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4                                                     | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9                                             | 1.33<br>7<br>1.30<br>7<br>1.23<br>7                                                |
| 90<br>95<br>100<br>105                      | 3.0 <b>PNA</b><br>3.0 <b>SPNA</b><br>t <sub>1/2</sub> =<br>2.0 <b>Ln{A //(A // // // // // // // /</b>                                                      | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390                            | 40 60<br>in.)<br>0.188<br>0.186<br>0.181<br>0.177                               | 3 SPI<br>tur<br>2 Lm {A/(/<br>1<br>0 0<br>0<br>0.06<br>0<br>0.06<br>1<br>0.07<br>2<br>0.07<br>4                               | <sup>50</sup> Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0.01<br>1                                                                                                                                                                                                | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8                                                | 150<br>5.08<br>5.00<br>4.24<br>4.12                         | spnu<br>3.0<br>Ln {a/(A<br>2.0<br>1.0<br>0.0<br>20.0<br>5<br>26.7<br>3<br>33.4<br>2<br>36.4<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A at pH9.3<br>4.31min.<br>4.31min.<br>10<br>10<br>3.81<br>3.70<br>3.45<br>3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6                                        | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6                                | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5                                   |
| 90<br>95<br>100<br>105                      | 3.0 SPNA<br>t <sub>1/2</sub> =<br>2.0 Ln{A/(A<br>1.0 0.0 0<br>0.245<br>0.244<br>0.233<br>0.231                                                              | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390                            | 40 60<br>in.)<br>0.188<br>0.186<br>0.181<br>0.177                               | 3 SP <br>1<br>2<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                         | <sup>50</sup> Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0.01<br>1<br>0.00                                                                                                                                                                                        | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8<br>0.08                                        | 150<br>5.08<br>5.00<br>4.24<br>4.12                         | 3.0 <b>SPNJ</b><br>3.0 <b>Ln { Ln { Ln / ( A</b><br>2.0 <b>D</b><br>1.0 <b>D</b><br>0.0 <b>D</b><br>20.0 <b>D</b><br>20.0 <b>D</b><br>26.7 <b>S</b><br>26.7 <b>S</b><br>33.4 <b>D</b><br>36.4 <b>S</b><br>66.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A at pH9.3<br>4.31min.<br>10<br>10<br>3.81<br>3.70<br>3.45<br>3.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6<br>1.30                                | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6<br>4.20                        | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5<br>1.15                           |
| 90<br>95<br>100<br>105<br>110               | 3.0 <b>PNA</b><br><b>3.0 PNA</b><br><b>1.0 1.7</b><br><b>1.0 0.245</b><br><b>0.244</b><br><b>0.233</b><br><b>0.231</b><br><b>0.222</b>                      | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390<br>0.395                   | 40 60<br>in.) 60<br>0.188<br>0.186<br>0.181<br>0.177<br>0.175                   | 3 SPI<br>tur<br>2<br>tur (A/(/<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | NA at pH7.1<br>22.15min.                                                                                                                                                                                                                                            | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8<br>0.08<br>0                                   | 150<br>5.08<br>5.00<br>4.24<br>4.12<br>3.67                 | spnu<br>3.0<br>Ln {A=/(A<br>2.0<br>1.0<br>0.0<br>20.0<br>5<br>26.7<br>3<br>33.4<br>2<br>36.4<br>5<br>66.8<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A at pH9.3<br>4.31min.<br>4.31min.<br>10<br>10<br>3.81<br>3.70<br>3.45<br>3.27<br>3.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>20</sup><br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6<br>1.30<br>1                | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6<br>4.20<br>2                   | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5<br>1.15<br>9                      |
| 90<br>95<br>100<br>105<br>110               | 3.0 SPNA<br>1.0 Ln{A/(A1.0<br>0.0 0<br>0.245<br>0.244<br>0.233<br>0.231<br>0.222<br>0.212                                                                   | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390<br>0.395<br>0.401          | 40 60<br>in.)<br>0.188<br>0.186<br>0.181<br>0.177<br>0.175<br>0.173             | 3 SPI<br>1 1<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0<br>0 0                                                                 | NA at pH7.1<br>22.15min.<br>2.15min.<br>3A,<br>50<br>Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0.01<br>1<br>0.00<br>6<br>0.00<br>6<br>0.00                                                                                                                       | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8<br>0.08<br>0<br>0.08                           | 150<br>5.08<br>5.00<br>4.24<br>4.12<br>3.67<br>3.28         | spnu<br>3.0<br>Ln {a_/(A<br>2.0<br>1.0<br>0.0<br>0<br>20.0<br>5<br>26.7<br>3<br>33.4<br>2<br>36.4<br>5<br>66.8<br>3<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A at pH9.3<br>4.31min.<br>4.31min.<br>10<br>10<br>3.81<br>3.70<br>3.45<br>3.27<br>3.19<br>3.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6<br>1.30<br>1<br>1.18                   | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6<br>4.20<br>2                   | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5<br>1.15<br>9<br>1.13              |
| 90<br>95<br>100<br>105<br>110<br>115        | 3.0 SPNA<br>t <sub>1/2</sub> =<br>2.0 Ln{A/(A/<br>1.0 0.245<br>0.244<br>0.233<br>0.231<br>0.222<br>0.212                                                    | at pH4.9<br>10.7min<br>At )}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390<br>0.395<br>0.401          | 40 60<br>iin.)<br>0.188<br>0.186<br>0.181<br>0.177<br>0.175<br>0.173            | 3 SP<br>1<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                               | NA at pH7.1<br>22.15min.<br>3A, 1<br>50 Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0.01<br>1<br>0.00<br>6<br>0.00<br>0<br>0                                                                                                                                       | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8<br>0.08<br>0<br>0.08<br>0<br>0.08<br>2         | 150<br>5.08<br>5.00<br>4.24<br>4.12<br>3.67<br>3.28         | 3.0 spn <i>J</i><br>3.0 tu {<br>2.0 tu {<br>2.0 0<br>1.0 0<br>20.0 5<br>26.7 3<br>33.4 2<br>36.4 5<br>66.8 3<br>∞                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | A at pH9.3<br>4.31min.<br>(A at pH9.3<br>4.31min.<br>(A at pH9.3<br>(A at pH9.3<br>( | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6<br>1.30<br>1<br>1.18<br>8              | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6<br>4.20<br>2<br>-              | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5<br>1.15<br>9<br>1.13<br>5         |
| 90<br>95<br>100<br>105<br>110<br>115<br>120 | 3.0 <b>PNA</b><br>3.0 <b>SPNA</b><br>t <sub>1/2</sub> =<br>2.0 <b>Ln{A</b> -/(A<br>1.0 0.245<br>0.245<br>0.244<br>0.233<br>0.231<br>0.222<br>0.212<br>0.202 | at pH4.9<br>10.7min<br>A, }}<br>20<br>Time(m<br>0.381<br>0.386<br>0.389<br>0.390<br>0.395<br>0.401<br>0.377 | 40 60<br>in.) 60<br>0.188<br>0.186<br>0.181<br>0.177<br>0.175<br>0.173<br>0.151 | 3 SPI<br>tur<br>2<br>tur (A/(/<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | NA at pH7.1<br>22.15min.<br>50 Ti<br>0.02<br>0<br>0.01<br>5<br>0.01<br>2<br>0.01<br>1<br>0.00<br>6<br>0.00<br>0<br>0.00<br>2<br>0.01<br>1<br>0.00<br>6<br>0.00<br>0<br>0<br>0.02<br>0<br>0<br>0.02<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 100<br>me(min.)<br>0.06<br>7<br>0.06<br>9<br>0.07<br>4<br>0.07<br>8<br>0.08<br>0<br>0.08<br>0<br>0.08<br>2<br>0.10 | 150<br>5.08<br>5.00<br>4.24<br>4.12<br>3.67<br>3.28<br>2.96 | SPNJ   3.0 \$uzes   1.0 0   0.0 0   20.0 5   26.7 3   33.4 2   36.4 5   66.8 3    16.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A at pH9.3<br>4.31min.<br>4.31min.<br>10<br>3.81<br>3.70<br>3.45<br>3.27<br>3.19<br>3.11<br>2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20<br>ime(min.)<br>1.62<br>6<br>1.60<br>9<br>1.44<br>4<br>1.41<br>6<br>1.30<br>1<br>1.18<br>8<br>1.08<br>6 | 30<br>2.99<br>8<br>3.28<br>6<br>3.50<br>9<br>3.59<br>6<br>4.20<br>2<br>-<br>2.81<br>6 | 1.33<br>7<br>1.30<br>7<br>1.23<br>7<br>1.18<br>5<br>1.15<br>9<br>1.13<br>5<br>0.89 |

Figure(2): Kinetic of complex absorbance (SPNA) versus time at a temperature of (25°C), at (pH4.9, pH7.1 and pH9.3), and at the optimum wavelength for each of pH.

Figure (2) shows that there is a direct relationship between the absorbances of the complex (SPNA) with time. It was also noticed that there was a sudden increase in the aforementioned absorbances after (60) minutes after the formation of the drug complex at (pH4.9), after (115) minutes after the formation of the drug complex at (pH7.1), and after (30) minutes after the formation of the drug complex at (pH9.3), and then the absorption to a stable state may be due to the completion of complex formation and the termination of the reaction. And the latter does not affect the values of ( $\lambda_{max}$ ) of the complex formed after these times, due to the end of the reaction, and this is confirmed by the values of the half-lives of its reactions, which were: (10.7min. at pH4.9), (22.15min. at pH7.1), (4.31min. at pH9.3) .In this study, we used the integration method to follow the kinetics of complex formation reactions.

When applying the following pseudo first order equation (equation(1)) to all the obtained kinetic results And by plotting  $Ln{A_{\infty}/(A_{\infty}-A_t)}$  graph against time (in minutes), we got good straight lines at all pH functions with values (R<sup>2</sup>) between (0.9900-0.9956) with slopes equal to the velocity constants (k). ) Their interactions, the latter indicates that the drug complex formation reaction is of the first pseudofirst order relative to the drug. From them, the velocity constants of the complex formed at the three acidic functions and at a temperature (25°C) were calculated, which enabled us to calculate the values of its half-live times(t<sub>1/2</sub>), which were calculated from equation(2): (10.7min. at pH4.9), (22.15min. at pH7.1), (4.31min. at pH9.3).

These results were identical to previous studies <sup>(6-7)</sup> on the kinetics of the reaction of the formation of Azo complexes.

From tables (3 and 4), the highest absorbances ( $A_{\infty}$ ) were obtained for the formation of the two studied complexes at the three pH, their formation expiration times ( $t_{\infty}$ ), their formation rate constants( $k_1$ ), and their half-live times( $t_{1/2}$ ).

It is also noted from Figures (1 and 2) that an increase in the reaction rate constant of the two studied drug complexes at the three pH levels, which inevitably leads to a decrease in their half-live times. And as shown in the following table (5):

Table(5): The values of the highest absorbances ( $A_{\infty}$ ) for the formation of the two studied complexes at the three pH and  $\lambda_{max}$  levels, their formation expiration times ( $t_{\infty}$ ), their formation rate constants ( $k_1$ ), and their half-live times ( $t_{1/2}$ ).

| No. of<br>Comple<br>x | Symbol of Complex | рН  | λ <sub>max</sub><br>(nm.) | t∝<br>(min.) | A∞    | k₁<br>(min.⁻¹) | (t <sub>1/2</sub> )<br>(min.) |
|-----------------------|-------------------|-----|---------------------------|--------------|-------|----------------|-------------------------------|
|                       |                   | 4.9 | 398                       | 105          | 0.350 | 0.0434         | 15.97                         |
| 1.                    | SSASS             | 7.1 | 392                       | 110          | 0.395 | 0.0300         | 23.11                         |
|                       |                   | 9.3 | 383                       | 90           | 0.470 | 0.0388         | 17.87                         |
| 2.                    |                   | 4.9 | 405                       | 60           | 0.305 | 0.0648         | 10.70                         |
|                       | SPNA              | 7.1 | 404                       | 115          | 0.401 | 0.0313         | 22.15                         |
|                       |                   | 9.3 | 393                       | 30           | 0.255 | 0.1609         | 4.31                          |

Table(5) shows the following:

1- The rate constants for the formation of the two complexes under study in the three

acid functions are of the pseudo-first order, and the highest values for the (SSASS) complex were (0.0434 at pH4.9), and the highest values for the (SPNA) complex were (0.1609 at pH9.3). And this discrepancy was consistent with kinetic studies of different interactions in the literature <sup>(20-21)</sup>.

- **2-** The rate constants for the formation of the complexes (k<sub>1</sub>) differ according to the reagent due to the different structure of the reagent.
- **3-** The (k<sub>1</sub>) of the two complexes differ according to the different values of the acid functions (pH).
- **4**. The  $(k_1)$  of the complexes are exactly inversely proportional to their half-live times $(t_{1/2})$ .
- 5- The wavelength of the complex ( $\lambda_{max}$ ) changes with the change in the acid function(pH) and the change in the reagent structure forming the complex.

The complex formation reaction (SSASS) takes place according to the following stages<sup>(22-24)</sup>:

 a- Converting the sulfanilic acid sodium salt to the diazotized sulfanilic acid sodium salt according to the following equation:



**b**- Coupling of the diazotized reagent with the drug under study, as follows:

It is noticed that the azo group is coupled at the (para) site<sup>(20-24)</sup> relative to the phenolic group, which itself represents the (meta) site relative to the carboxyl group present in the drug. **CONCLUSIONS** 

1- The values of the formation rate constants of the two complexes (SSASS) and (SPNA) depend on the structure of the reagent forming each of them, as well as their difference according to the different acid functions (pH).

- 2- The values of the half-live times( $t_{1/2}$ ) of the formation reactions of the two complexes at the three pH levels were exactly the opposite of the rate constant values( $k_1$ ) for the formation of the complexes, which are shown in the previous paragraph. This indicates that the faster reaction is completed in less time.
- **3-** The wavelength of the complex ( $\lambda_{max}$ ) changes with the change in the acid function (pH) and the change in the reagent structure forming the complex.

### References

1. Ahmed H. A. Mohsin and Mohammad M. H. Al-Niemi , (2021). "A thermodynamic study for the stability of some

aromatic complexes formation derived from the reaction of 4-dimethyl amino benzaldehyde with diazotized dinitro aniline reagents", Egyptian Journal of Chemistry (SCOPUS), Published (Online).

- Ahmed H. A. Mohsin and Mohammad M. H. Al-Niemi , (2021). "Determination of thermodynamic parateters and studying the stability of some aromatic complexes derived from 4-dimethyl aminobenzaldehyde with dinitro aniline reagents", International Journal for Sciences and Technology (IJST), Published (Online)., Vol.(16), No.(3).
- 3. A. Martin, (1993). "Physical Pharmacy", 4<sup>th</sup> ed., Lee and Febiger, London, pp.251-370.
- 4. Fei, Na; Sauter, Basilius; Gillingham, Dennis (2016). "The pK a of Brønsted acids controls their reactivity with diazo compounds", Chemical Communications, 52 (47): 7501–7504.
- 5. Carey, A. Francis (2007). "Advanced organic chemistry", Sundberg, Richard J., (5th ed.). New York: Springer.
- 6. Norman, R. O. C. (Richard Oswald Chandler) , (2017). "Principles of Organic Synthesis", (3rd ed.). CRC Press.
- 7. K. Hunger and W. Herbst , (2012). "Pigments, Organic" in Ullmann's Encyclopedia of Industrial Chemistry, Wiley- VCH, Weinheim.
- 8. F. A. Carey and R. J. Sundberg, (2007). "Advanced Organic Chemistry", Vol. B, Chapter 11: Springer, pp.1028-1030.
- 9. Boullard Olivier, Leblanc Henri and Besson Bernard, (2000). "Salicylic Acid". Ullmann's Encyclopedia of Industrial Chemistry.
- 10.F. Matter, (2014). "Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names", Cambridge: Royal Society of Chemistry, p. 64.
- 11. MC. Stuart, M. Kouimtzi and SR. Hill, (2009). World Health Organization, p.310.
- 12."SALICYLIC ACID National Library of Medicine HSDB Database ". toxnet. nlm. nih.
- 13. RK. Madan and J. Levitt J , (2014). "A review of toxicity from topical salicylic acid preparations", J. Am. Acad. Dermatol., 70 (4), pp:788–92.
- J. Péc, M. Strmenová, E. Palencárová, R. Pullmann, S. Funiaková, P. Visnovský, J. Buchanec and Z. Lazarová, (1992). "Salicylate intoxication after use of topical salicylic acid ointment by a patient with psoriasis", Cutis. 50 (4), pp: 307–309.
- 15. S. Olakunle, O. Kotawole , A . Adegoke , A . Fasanmade and A . Olanilyi, (2005). Journal of AOAC International

, 88(4), 1108-1113.

- 16. F. Shayegh, F. Hair and S. M.K. Shahri, (2009). "Petroleum and Coal", 51(1), 13-17.
- 17. A. S. Azzouz and M. M. H. AL-Niemi , (2009). Nat . J. Chem., 36, 700-719.
- 18. A. S. P. Azzouz and M. M. H. AL-Niemi , (2009). J. Edu. Sci., 22(1), 1.
- 19. A. Finally and J. A. Kitchener, (1963). "Practical Physical Chemistry", 6<sup>th</sup> ed., Longman green, London.
- 20. M. M. H. AL-Niemi , (2011). " Calculation of the kinetic parameters to activate the formation of azoimine dyes derived from the reaction of substituents of ortho-4,2dihydroxybenzylidene aniline with the diazotized sulfanilic acid sodium salt", J. Edu. and Sci., 24(2), pp:29-44.
- 21. M. M. H. AL-Niemi , (2012). "Study of the effect of temperature on the kinetics of the reactions of dyes produced from the reactance of 2,4-dihydroxy benzaldehyde, syn and anti-4,2-dihydroxybenzaldehyde with electron-donating (diazotized sulfanilic acid sodium salt) reagent", J.Edu. and Sci.,(2012) ,25(2), pp:27-43.
- 22. A. S. Azzouz and I. Z. Sulyman, (2004). J. Edu. Sci., 16, 125.
- 23. Sidney, Siggia and Gordon J. Honna , (1979). "Quantitative Organic Analysis Via Functional Groups", John Wiley, 4<sup>th</sup> ed., New York, 63-93.
- 24. D. B. T. Al-Bakzo and M. M. H. AL-Niemi , (2021). "STUDY OF THERMODYNAMIC PARAMETERS FOR AZO DYES DERIVED FROM SUBSTITUENTS OF 2.4-DIHYDROXYACETOPHENONE", Vol.10, Issue10, PP: 134-144.