

Relationship of nanobacterium Cupriavidus gilardii with formation of kidney stones

Ghadaq Hameed Neamah ¹, sarah hasan kadhum ², Bashaer Ahmed Alameedy ³

^{1,2,3} Medical Laboratory Techniques Department, Imam Ja'afar Al-Sadiq University, Al-Najaf, Iraq.

Abstract:

Fifty five kidney stones were gathered from 50 patients in Al-Sader clinical city in Al-Najaf territories. Kidney stone killed by (ESWL), (PCNL) or open an operation .The normal size of stones was under 0.5 cm and with normal load of 0.7 g. The PCR and sequencing results showed that the nanobacteria we refined is 80% like Nanobacterium sp. nano P 16S ribosomal RNA quality. This is a pioneer study, the first review in IRAQ that is secluded nanobacteria from kidney stone and show the connection among nanobacteria and kidney stone infection.

Keyword: nanobacterium, cupriavidus gilardii, kidney stones.

Introduction:

Nanobacteria are the littlest cell-walled microscopic organisms, found in human and cow blood and in business cell culture serum. metabolic speeds of Nanobacteria are extraordinarily lazy, they can make carbonate apatite on their cell envelope mineralizing rapidly a large portion of the accessible calcium and phosphate (National Research Council ., 1999).

A few reports on clinical preliminary and serological recognition of Nanobacteria in neurotic material, principally the calcified tissues (aneurysms, carotid plaques, femoral blood vessel plaques, and cardiovascular valves) related with atherosclerosis. There are a few signs that ultrasmall microorganisms can cause or go with urinary contamination, periodontosis, and even malignant growth advancement (Miller et al., 2004; Laskin et al., 2005)

A few speculations have been advanced to clarify the etiology of nephrolithiasis however none has had the option to respond to completely the inquiries concerning the instrument of renal calculi arrangement. the known component of stone arrangement is the ensuing strategies like pee supersaturation, gem nucleation and collection, achieving maintenance of gems (nidi) and proceeded with development on the held crystals(Jeong et al., 2007)

The development of kidney stones could be prompted after intrarenal infusion or contamination with Nanobacteria (Ansari et al., 2017). It has as such been suggested that the biogenic apatite layer present on the cell surface may go presumably as a nidus moving the course of crystallization and improvement of calcified stores (Hu delist et al., 2004).

Bio mineralization alludes to the cycles by which organic entities structure minerals, additionally depict as portrays the testimony of mineral inside or outside the cells of living creatures (Boskey ., 2003).

It field that ranges both the inorganic and the natural world. Albeit by far most of living beings don't frame mineralized stores, the wonder is still very wide spread , All five realms contain

individuals that mineralize. These organic entities are fit for framing approximately 60 distinct minerals, calcium is the cation of decision for most living beings.

The calciumbearing minerals include around half of known biominerals (Lowenstam and Weiner, 1989). Kidney stones are mineral stores in the renal calyces and pelvis that are discovered free or associated with the renal papillae . They contain clear and normal parts, Stone improvement is significantly normal with speeds of up to 14.8% and growing over the span of late years. , and a recurrent speed of up to half inside the underlying 5 years of the basic stone scene (Khan et al., 2016).

The aim of study:

Isolation and identification of Nanobacteria (cupriavidus gilarrdii) from kidney stones.

Materials and methods:

Materials

Polymerase chain reaction materials :

1: PCR master mix : According to Maxime PCR PreMix kit (i-Taq).

2: Molecular weight DNA marker : According to KAPA Universal Ladder kits .

3:DNA extraction from Nanobacteria :According to Protocol of G- spin DNA extraction .

4. : Agarose gel electrophoresis of DNA .

Preparation of the Agarose gel : According to Sambrook et al (1989).

The primer used in the study :

The primer was investigated by IDT (Integrated DNA	Product siz
Technologies company, Canada).	110000000
Forward: 5'- AGAGTTTGATCCTGGCTCAG- 3'	1485 base

ze pair

Reverse: 5'- GGTTACCTTGTTACGACTT- 3'

Molecular detection of NB using PCR

PCR PreMix Kit (Table 3-1) is the item what is blended each part: I-Taq DNA Polymerase, dNTP combination, response cradle (Table 3-2). Do PCR simply add a layout DNA, groundwork set, and D.W (Table 3-3). The subsequent explanation is that it has Gel stacking cradle to do electrophoresis, so we can do gel stacking with practically no treatment.

Table(3-1): The Compone	ents of the <u>Maxime</u> PCK <u>PreMix</u> kit (1-1 ag)
Material	Concetration
5U/ µ1	i-Tag DNA Polymerase
2.5mM	DNTPs
1X	Reaction buffer (10X)
	Gel loading buffer

Table(3-1): The Components of the Maxime PCR PreMix kit (i-Taq)

Table(3-2): Mixture of the specific interaction for diagnosis gene

Components	Concentration
Tag PCR PreMix	5μL
Forward primer	1.5 μL (10 picomols/ μL)
Reverse primer	1.5μL (10 picomols/ μL)
DNA	5 µL
Distill water	UP TO 20 µL

Table(3-3): The optimum condition of detection gene

No.	Phase	Tm (°C)	Time	No. of cycle
1 cycle	3 min	95∘C	Initial Denaturation	1
40 cycle	45sec	95∘C	Denaturation - 2	2
	45sec	52°C	Annealing	3
	1.5min	72•C	Extension-1	4
1 cycle	10 min.	72°C	Final Extension	5

DNA Sequencing and Sequence Alignmen

Sequencing of gene was performed by national instrumentation center for environmental management (nicem) online at (http://nicem.snu.ac.kr/main/?en_skin=index.html), biotechnology lab, machine is DNA sequencer 3730XL, Applied Biosystem), Homology search was conducted using Basic Local Alignment Search Tool (BLAST) program which is available at the National Center Biotechnology Information (NCBI) online at (http://www.ncbi.nlm.nih.gov) and BioEdit program.

RESULTS:-

55 kidney stones were gathered from 50 patients in Al-Sader clinical city in Al-Najaf areas. Kidney stone eliminated by extracorporeal shockwave lithotripsy (ESWL), Percutaneous nephron lithotomy (P C N L) or open an medical procedure . The normal size of stones was under 0.5 cm and with normal load of 0.7 g .

The PCR and sequencing results showed that the band of nanobacteria is show up on 1485 bp

Initial step to guarantee that DNA isn't divided .we use electrophoresis and the outcome allude to that DNA was complet and not divided . To guarantee of the presence of DNA in examples , after extraction we tried it by Biophotometer and the aftereffect of focus between 130 ug\ml to 378 ug\ml , while the purity is between 1.59 to 1.86 (OD 260\280).

Figure (4-1): Gel electrophoresis of genomic DNA extraction from *Nanobacteria*, 1% agarose gel at 5 vol /cm for 1:15 hour

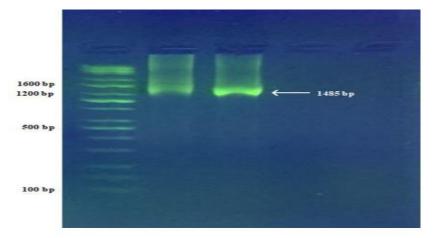


Figure (4-2): PCR product the band size 1485 bp. The product was electrophoresis on 2% agarose at 5 volt/cm. 1x TBE buffer for 1:30 hours. M: DNA ladder (100-10000).

Sequencing

The sequences producing significant alignments: 80 % identical with nanobacterium sp. Nano p 16 s rRNA (Figure 4-4 and 4-5).

The partial seguencing is :

AACGAAGGCGGCTGCAGGCTTAACACATGCAGTCGAACGGCCCACCAGGGGGTTGCAGACGGGTT GGTAAGTGGGGGAAAGATAGCCTAAGCTCCGAATGTGCGCGTGCGAGATCGATAACTCCGGGAAA CTGCAATTCATACCGCATACGAGCTACGGGGGGAGAGACTGGGACCTCGGGGACTAGGATATGACCA TGGGTTGGATTAGCTAGTTCGTGATGTTAAGGCCTACCAAAGCCACGATCCATATCTGTTCTGAGAG

T 335 22.56

GATGATGAGCCACTTGTGGAACTGAAACTCGGTCCAAACCCCTACGGGAGGCGGCGGTGGGGAAG ATTGGAAAATGGGGGCATGAGCCTAATCCAGCCATACCGCTTGCGTGATTAAGGTCATAGGGTTGT GAAGCTCTTTACATCGTGAGAAGATAATGAGGAATTCGGAGAAGAGGACCAGGCTAACTTGGTGCC ATCAGCCGTGGAAATAGAACGGGGCTAGCGTTGTTCGGAATTTCTGGGCGTAAGCGCACGTAGGTG GATATTTAAGTGAGGGTAAAGGTTCCAGAGCTTAACTCTGGAACACCATTGAATTACTGGGTATCTT GGGTATGGAAAAGGTAAGTGGAATTCCGAGTTTAGGGGTGGAATCCGGGATATCCGGGGGGGCATA ACTACCAGGGGCGAAGCGGCTTACTGGGGATTGCAATTTACTCGTGACACATTTATGAGGTGCGTTA CGGGCAGTTTACTGTTGGGGCGCAGCAGGCATTAAACCTCCCCCGGGGGGAGTACCATCCAAAATA AAAACTCAAAGGAATTGACGGGGGTCCGCACCAGGGGTGGAGAATGTTGTTTAATTCTAAGCAACG CGCAGAAACTTACCAGCTCTTTACATTCGGGTTATGCGCGGGTGGAGAACGATGTCCTTTCATTAGG CTGTCCACAGAACAGGTGCTGCATGGCGGTCGTCAGCTCCTGTCATTAGATTTTAGGTTAAGTCCCGC AACGACCGCCCCCCCCTTAGTTACCCGCGTTGAGTTGAAGGCACTTTAACGCGACGTTTTTTTGC GGCCGGTGATACACCCGCCCAGAAGATGGGGGGGGGTGTCGTCAATTTCTCCTGGCCCCACTTACAAT TGTTTTGCTAGGCTACAACGAGACGTGTTAATCTATGGTGATTACAGAGGAAGCGAGACTGCGCTGT CGAGCTAACTCTCCAAAAGCAATCTCAGATCGAATTGCGCTCTGCAACACAAGTGCATGAGAGTTCG AATCGCTAGTTACCGCAATCAGCATGGTGAGGTGAATCCCTTCCCGGGCCCTCTGCACACCGCACAT CGGGTAGGGGCAGCGACTGAGGTG

Length = 1485 base pairs Molecular Weight = 449932.00 Daltons, single stranded Molecular Weight = 903269.00 Daltons, double stranded G+C content = 51.99% A+T content = 48.01% Nucleotide compositions of *nanobacterium* as showed in (figure 4-28). Nucleotide Number Mol% A 378 25.45 C 330 22.22 G 442 29.76

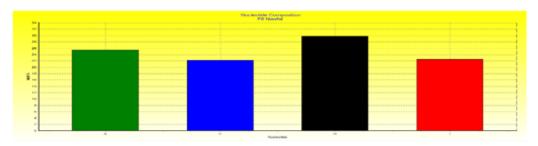


Figure (4-3): Nucleotide compositions of *nanobacterium* .which is show that : A 378, C 330, G 442 and T 335

Description	Max score	Total score	Query cover	E value	Ident	Accession
Nanobacterium sp. nanoP 16S ribosomal RNA gene, partial sequence	1207	1207	100%	0.0	80%	JN029830.1
Agrobacterium tumefaciens strain S-188E 16S ribosomal RNA gene, partial sequence	<mark>1</mark> 198	1198	100%	0.0	79%	<u>JF513176.1</u>
Agrobacterium sp. strain CIP 107444 16S ribosomal RNA gene, partial sequence	1195	1195	100%	0.0	79%	MF443190.1
Uncultured bacterium clone OTU48 16S ribosomal RNA gene, partial sequence	1195	1195	100%	0.0	79%	KP975304.1

figure (4-4): the sequences producing significant alignments: 80% Identical with nanobacterium sp. Nano p 16 s rRNA.

Nanoba Sequence	e ID: JN0	n sp. nanoP 16S ribosomal RNA gene, partial sequence 129630_1_Length: 1407_Number of Matches: 1	
Range 1: Score 1207 bi	ts(1338)	D7 Genflank Graphics Next Match Previous Match Expect Identities Gaps Strand 0.0 1196/1504(80%) 116/1504(7%) Plus/Plus	
Query	1	AACGAAGGC-GGCTGCAGGCTTAACACATGCA-GTCGAACGGCCCACCAGGGG-GTTGCA AACGAACGCTGGCGGCAGGCTTAACACATGCAAGTCGAACGCCCCGCAAGGGGGAGTGGCA	57 60
Query	58	GACGGGTTGGTAAGTGGGGGGAAAGATAGCCTAAGCTCCGAATGTGCGCGTGCGAGATCGA	117
Sbjct	61 118		102 177
Sbjct	103	TAGCTCCGGGAAACTGGAATTAATACCGCATACGCCCTACGGGGGAAAGATTTATC	158
Query	178 159	GGGGAAGGATTGGCCCGCGTTGGATTAGCTAGTTGGTGGTGGTAAGGCCTACCAAA	237
Query	238	GCCACGATCCATATCTGTTCTGAGAGGATGATGAGCCACTTGTGGAACTGAAACTCGGTC LCGACGATCCATAGCTGGTCTGAGAGGATGATCAGCCACAT - TGGGACTGAGACACGGCC	297
Sbjct	215 298		273 357
Sbjct	274	CAAACCCCTACGGGAGGCGGCGGTGGGGAAGATTGGAAAATGGGGGCATGAGCCTAATCC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	331
Query Sbjct	358		417 389
Query	418		476
Sbjct Query	390 477		449 534
Sbjct	450	-GAACGGGGCTAGCGTTGTTCGGAATTTCTGGGCGTAA-GCGCACGTAGGTGGATATTTA 	509
Query	535	AGTGAGGGTAAAGGTTCCAGAGCTTAACTCTGGAACA-CCATTGAATTACTGGGTATCTT	593
Sbjct	510 594	AGTCAGGGGTGAAATCCCAGAGCTCAACTCTGGAACTGCCTTTGATACTGGGTATCTT GGGTATGGAAAAGGTAAGTGGAATTCCGAGTTTAGGGGTGGAATCCCGG-GATATCCCGGGG	567 652
Sbjct	568	GAGTATGGAAGAGGTAAGTGGAATTCCGAGTGTAGAGGTGAAATTCGTAGATATCGGAG	627
Query	653	GGCATAACTACCAGGGGCGAAG-CGGCTTACTGGGGATTGCAATTTACTCGTGACACATT	711
Sbjct	628	GAC-ACCAGTGGCGAAGGCGGCTTACTGGTCCATTACTGACGC	670
Query	712	TATGAGGTGCGTTAAAgggggggggAACAAACAGGATTAGATATCGTTGTAGTTccccccc IIIIIIIIIIIIIIIIIIIIIIIIIIIII	771
Sbjct	671 772		725 826
Query Sbjct	726	CTAAACGATGAATTTTT-CCTTCGGGCAGTTTACTGTT-GGGGGCGCAGC-AGGCATTA	785
Query	827	AACCTCCCCCGGGGGGGGTACCATC-CAAAATAAAAACTCAAAGGAATTGACGGGGGTCC	885
Sbjct	786	AACATTCCGCCTGGGGAGTACGATCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCC	845
Query	886 846	GCACCAGGGGTGGAGAATGTTGTTTAATTCTAAGCAACGCGCAGAAACTTACCAGCTCTT	945
Sbjct	846 946	TACATTCGGGTTATGCGCGGGTGGAGAACGATGTCCTTTCATTAGGCTGTCCACAGAACA	1005
Sbjct	906	GACATTCGGGGTATGGGC-ATTGGAG-ACGATGTCCTTCAGTTAGGCTGGCCCCAGAACA	963
Query	1006	GGTGCTGCATGGCGGTCGTCAGCTCCTGTCATTAGATTTTAGGTTAAGTCCCGCAACGAC	1065
Sbjct	964	GGTGCTGCATGGCTGTCGTCAGCTCGTGTGGGATGTGGGTTAAGTCCCGCAACGAG	1023
Query	1066	CGCCCCCCCCTTAGTTACCCCGCGTTGAGTTGAAGGCACTTTAACGCGACGttttt 	1123
Sbjct Query	1024		1073
Sbjct	1074	ttgCGGCCGGTGATACACCCCGCCCAGAAGATgEgggggggGTGTCGTCATTTCTCCTGGCC IIIIIIIIIIIIIIIIIIIIIIIIIII	1126
Ouery	1184	CCACTTACAATTGTTTTGCTAGGCTACAACGAGACGTGTTAATCTATGGTGATTACAG-A	1242
Sbjct	1127	CCACTTACAATTGTTTTGCTAGGCTACAACGAGACGTGTTAATCTATGGTGATTACAG-A IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	1170
Query	1243	GGAAGCGAGACTGCGCTGTCGAGCTAACTCTCCAAAAGCAATCTCAGATCGAATTGCGCT	1302
Sbjct	1171	GGCAGCGAGACAGCGATGTCGAGCTAA-TCTCCCAAAAGCCATCTCAGTTCGAATTGCACT	1229
Query	1303 1230	CTGCAACACAAGTGCATGAGAGTTCGAATCGCTAGTTACCGCA-ATCAGCATGGTGAGGT	1361 1288
Query	1230		1288
Sbjct	1289	GAATCCCTTCCCGGGCCCTCTGCACACCGCACATCATACCAGGGGAGTCGGTTTTAACCCC IIIIIIIIIIIIIIIIIIIIIIIIIIIII	1347
Query	1422	GAAGGTAGTGCGCTAAACGCAAGGAGGAAGCTAACCGCCACGGGTAGGGGCAGCGACTGA	1481
Sbjct	1348	GAAGGTAGTGCGCTAACCGCAAGGAGGCAGCTAACCACGGTAGGGTCAGCGACTGG	1403
Query	1482 1404	GGTG 1485 GGTG 1407	
sujee	1.404	and and	

Figure (4-5): the partial nucleotide sequence of 16 sRNA <u>NB</u>. Which show 80% similarity with *nanobactreium sp*.

Discussion:

PCR results show the 1485 bp portion . in this review we have severe strategies of PCR. Nothing could be found in the negative benchmark group and there was no microscopic organisms. We support the aftereffects of PCR. Subsequently, the expansion in exact new 16S rRNA groupings and the advancement of elective gees for sub-atomic recognizable proof of certain taxa ought to additionally work on the handiness of sub-atomic ID of NB. The 16S rRNA sequencing gives unambiguous information even to uncommon separates, which are reproducible in and between labs.

16S rRNA arrangements homology investigation upholds the view that biomineralization was presence of NB distinctive strain in the diverse tissue .While most writers discovered NB in kidney stones, Drancourt neglected to separate NB in refined material from 10 models, though recognized nanoparticles in material separated by SEM (Drancourt et al., 2003). This blunder between results gained by SEM direct examination of renal stones and culture motivation is an enchanting one. When in doubt, most reports have shown that examination by SEM is more capable than culture to perceive NB . One request rises out of this finding: in the event that NB are precursors of renal stones, as affirmed by various specialists, why culture is a less useful area methodology? A single possibility is that for start creating NB it would be fundamental a base beginning number of particles which would not occur in all stones (Simonetti et al., 2012),Kumon found NB in around 60% of the urinary stone models among Japanese and Paraguayan patients(Kumon et al., 2011) .

Nucleic corrosive examination on NB has numerous issues, e.g., nucleic corrosive extraction is troublesome because of apatite and separated DNA-like material has hindered the intensification of exogenous bacterial DNA in PCR techniques. More exertion ought to be made for the portrayal of NB(Kajander et al., 2003).Conclusion: -All type of kidney stone contine nanobacteria.

References:

- Ansari, H.;Sepahi, A. A.; and Sepahi, M. A. (2017). Different Approaches to Detect "Nanobacteria" in Patients with Kidney Stones: an Infectious Cause or a Subset of Life? Urology journal, 14(5): 5001-5007.
- 2. Boskey, A. L. (2003). Biomineralization: an overview. Connect Tissue Res, 44 Suppl 1, 5-9.
- Drancourt, M.;Jacomo, V.;Lépidi, H.;Lechevallier, E.;Grisoni, V.;Coulange, C.;Ragni, E.;Alasia, C.;Dussol, B.; and Berland, Y. (2003). Attempted isolation of Nanobacterium sp. microorganisms from upper urinary tract stones. Journal of clinical microbiology, 41(1): 368-372.
- Hudelist, G.;Singer, C. F.;Kubista, E.;Manavi, M.;Mueller, R.;Pischinger, K.; and Czerwenka, K. (2004). Presence of nanobacteria in psammoma bodies of ovarian cancer: evidence for pathogenetic role in intratumoral biomineralization. Histopathology, 45(6): 633-637.

- 5. Jeong, B. C.; Kim, B. S.; and Kim, H. H. (2007). Association between Nanobacteria and Urinary Calcium Stone Disease. Korean Journal of Urology, 48(5): 512-516.
- 6. Kajander, E.;Ciftcioglu, N.;Aho, K.; and Garcia-Cuerpo, E. (2003). Characteristics of nanobacteria and their possible role in stone formation. Urol Res, 31(2): 47-54.
- 7. Khan, S. R.; Pearle, M. S.; Robertson, W. G.; Gambaro, G.; Canales, B. K.; Doizi, S.; Traxer, O.; and Tiselius, H. G. (2016). Kidney stones. Nat Rev Dis Primers, 2, 16008.
- Kumon, H.;Matsumoto, A.;Uehara, S.;Abarzua, F.;Araki, M.;Tsutsui, K.; and Tomochika, K. (2011). Detection and isolation of nanobacteria-like particles from urinary stones: long-withheld data. Int J Urol, 18(6): 458-465.
- 9. Laskin, A. I.;Bennett, J. W.; andGadd, G. M. (2005). Advances in Applied Microbiology: Elsevier Science.
- 10. ane, D.J. (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. New York: Wiley. pp. 115– 175.
- 11. Lowenstam, H. A.; and Weiner, S. (1989). On biomineralization: Oxford University Press on Demand.
- Miller, V. M.;Rodgers, G.;Charlesworth, J. A.;Kirkland, B.;Severson, S. R.;Rasmussen, T. E.;Yagubyan, M.;Rodgers, J. C.;Cockerill, F. R., 3rd;Folk, R. L.;Rzewuska-Lech, E.;Kumar, V.;Farell-Baril, G.; and Lieske, J. C. (2004). Evidence of nano bacterial-like structures in calcified human arteries and cardiac valves . Am J Physiol Heart Circ Physiol, 287(3) : 1115-1124.
- 13. National Research Council,(1999).Size Limits of Very Small Microorganisms: Proceedings of a Workshop: National Academies Press.
- 14. Sambrook J, Fritschi EF and Maniatis T, (1989) Molecular cloning: a laboratorymanual, Cold Spring Harbor Laboratory Press, New York.
- Simonetti , A. B.; Da Ros, C. T.; de David, C.;Campos, K.;Behar, P. R. P.;Ribeiro, E.; and Hidalgo, G. E. N. , (2012).Occurrence of nanobacteria-like particles in renal stones of a southern Brazilian population. Urological Open Access Journal, 2 (01) : 1-5.
- 16. Vogelstein , B. ; and Gillespie , D. ,(1979). Preparative and analytical purification of DNA from agarose. Proc Natl Acad Sci U S A , 76(2) : 615-619