

Factoral Influences On Sustainable Risk Management Practices In It Industry

*Akram Pasha , **Dr. K.Sreekanth

* Akrampasha, Research Scholar, GITAM Hyderabad Business School, GITAM (Deemed to be University), Hyderabad.

** Dr.K.Sreekanth, Assistant Professor, GITAM Hyderabad Business School, GITAM (Deemed to be University), Hyderabad.

Abstract

Purpose: To identify the factors which influence risk management practices in Information technology industry. To investigate and analyze the prominent factors causing risk management in IT industry.

Approach: Data was collected from 67 IT employees who are having more than three years of experience in IT projects based on convenience and snow ball sampling from Information Technology Companies located in Hyderabad who have been listed in NASSCOM. The hypotheses have been formulated and tested using SPSS software and the results have been arrived at.

Findings: The results from statistical analysis of the data indicate that in the IT organizations at all levels, cost of project, project schedule, project team, technological environment, organization culture and client are important factors that have been identified from the study believed to instill risk management at all levels irrespective of the designation.

Practical implications: It enables one to understand factoral influences on risk management practices. IT Organizations which intend to introduce or improve risk management in the organization can inculcate these practices into their organizational culture.

Originality/value: Although there does exist literature for identifying the factors of risk management, limited literature could be found focusing on factors which influence risk management in IT industry. This study may serve as a point of reference for future studies in this area of concern.

Index Terms - Sustainability, Organization, Information technology, risk management practice and IT employee.

Introduction

In present scenario, IT organizations are following the sustainable risk management strategies to run their activities within socio-economic constraints. The risk is involved in every business activity in different forms (Osuszek and Ledzianowski 2020; Tiwari and Suresha 2021). IT organizations have no

exception in this risk. Information technology is one of the primary industries in the Indian economy. The IT industry has brought financial growth and success for the emerging economy in India.

Hyderabad is well known as one of the best IT/ITES hub of India with large companies such as Amazon, Google, Microsoft, Infosys, TCS, Genpact, Deloitte, Facebook, Bank of America, Thomson Reuters, Cognizant and Franklin Templeton among others are growing their presence in the Telangana. According to IT department report released by Chief Minister's office (CMO), Telangana has registered 17.93% growth in IT exports for the year 2019-2020 over the previous year's growth (2018-2019). This number is more than the double the national average 8.09% and more than two and half times the rest of nation. i.e. 6.92%. (Source : "Telangana records 17.93 % growth in IT sector". The Times of India. 21 May 2020. Retrieved 25 October 2021).

Risk identification is of old concept used to explore various ways to prevent unfavorable situations for the well-being of humanity (Crockford 1982). The development of risk management and important functions concerned with risk management has evolved from past many years (Biolcheva 2020). Risk management helps IT executives to take accurate decisions to manage risk and to protect projects though the risk cannot be eliminated completely.

Objectives of the study

- To study the risk management practices in Information technology industry.
- To identify and analyze the factors which influence risk management practices in IT industry.
- To know the impact of impact of risk management on IT employees.
- To suggest certain steps for improvement of risk management in IT industry.

Research methodology:

Sources of the Data: As this is investigative study, the data comprises of both primary and secondary sources. The Primary data was collected through a structured questionnaire by distributing to Software IT employees who are in project and having three and more years experience working in IT organizations in and around Hyderabad. The secondary data has been collected from journals, magazines, books and websites.

Sampling method used: Data was collected from 67 IT employees based on convenience and snow ball sampling from Information Technology Companies located in Hyderabad who have been listed in NASSCOM.

Statistical tools used: The hypotheses have been formulated and tested using SPSS software and the results have been arrived at.

Statistical analysis

To test the reliability of data, the data collected was subjected to cronbach's alpha test. The results were

_ _ . .

Reliability

	Reliability Statistics										
		(Cronbach's	N of Items							
	ŀ		Alpha								
			.462	24							
	•	-	Scale	e Statistics							
Ĩ	Mea	n	Variance	Std. Deviation	N of Items						
	40.2	2	16.873	4.108	24						

Inference: Cronbach's alpha has been run for to check their reliability. The above table displays some of the results obtained. The overall alpha for the all items is 0.462, which is very high and indicates strong internal consistency among the given items.

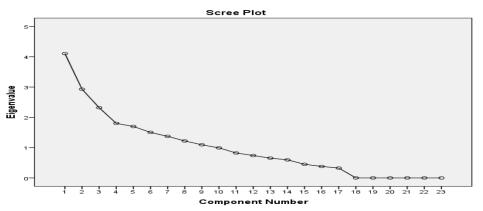
Factor Analysis: Factor analysis was done in order to obtain factors with the greatest factor loading value. The results obtained were:

	Mean	Std. Deviation	Analysis N
Leadership effectiveness	1.40	.579	67
Encouragement	2.00	.718	67
Organizational policy	1.18	.386	67
Organizational Culture	1.52	.533	67
Working condition	1.30	.461	67
Project team	1.25	.438	67
Performance deadlines	2.31	.763	67
Co-operation at work	1.46	.636	67
Cost of Project	1.97	.984	67
Project Schedule	1.97	.984	67
Team work	1.97	.834	67
Internal communication	2.30	.835	67
Transparency	1.52	.682	67
Feedback	1.30	.461	67
Incentives	2.07	.502	67
Compensation system	2.03	.521	67
Reward system	1.31	.467	67

Nat. Volatiles & Essent. Oils, 2021; 8(4): 15570-15582

Technological environment	1.25	.438	67
Workload	1.91	.753	67
Individuality	2.07	.502	67
Decision making	2.03	.521	67
Client	1.52	.533	67
Top management support	1.30	.461	67

Total Variance Explained


				Extraction Sums of Squared Rotation Sums of Squared Loadings					
Component	In	itial Eigenvalı	Jes	Extra		-	Rotation	i sums of Sq	uared Loadings
			1		Loadin	-		1	1
	Total % of Cumul		Cumulative	Total	% of	Cumulative	Total	% of	Cumulative %
		Variance	%		Variance	%		Variance	
1	4.106	17.852	17.852	4.106	17.852	17.852	2.539	11.039	11.039
2	2.928	12.731	30.583	2.928	12.731	30.583	2.378	10.340	21.378
3	2.318	10.079	40.661	2.318	10.079	40.661	2.197	9.553	30.931
4	1.801	7.830	48.491	1.801	7.830	48.491	2.143	9.320	40.251
5	1.699	7.386	55.877	1.699	7.386	55.877	2.135	9.284	49.535
6	1.503	6.533	62.410	1.503	6.533	62.410	2.121	9.224	58.759
7	1.373	5.970	68.381	1.373	5.970	68.381	1.812	7.876	66.636
8	1.220	5.305	73.686	1.220	5.305	73.686	1.440	6.262	72.898
9	1.094	4.758	78.444	1.094	4.758	78.444	1.276	5.546	78.444
10	.992	4.313	82.757						
11	.823	3.579	86.336						
12	.740	3.215	89.552						
13	.654	2.842	92.394						
14	.596	2.592	94.986						
15	.449	1.953	96.939						
16	.379	1.646	98.585						
17	.325	1.415	100.000						
18	4.799E-016	2.086E-015	100.000						
19	3.130E-016	1.361E-015	100.000						
20	1.145E-016	4.976E-016	100.000						
24	-1.466E-	-6.372E-	100.000						
21	016	016	100.000						
22	-4.710E-	-2.048E-	400.000						
22	016	015	100.000						
22	-2.914E-	-1.267E-	400.000						
23	015	014	100.000						
						1	<u> </u>	-	

Extraction Method: Principal Component Analysis.

Factor: The initial no. of factors is the same as the no. of variables used in the factors analysis. However not all 23 factors will be retained. In this example only the first 09 factors will be retained since their Eigen value is greater than 1.

Initial Eigen values: Eigen values represent the variances of the factors.

TOTAL: This column contains the Eigen values. The first factor will always account for the maximum variance and the next factor will account for lesser variance compared to the first factor as observed and so on. Hence each successive factor will account for lesser and lesser variance.

The scree plot plots the Eigen values against the corresponding factor. One can see these values in the first two columns of the table immediately above. From the third factor on, you can see that the line is almost flat, meaning the each successive factor is accounting for smaller and smaller variation in the data.

					Compon	ent			
	1	2	3	4	5	6	7	8	9
Leadership effectiveness					-			.537	
Encouragement				.606					
Organizational policy									
Organizational Culture		.722							
Working condition	.612								
Project team		619	.544						
Performance deadlines								.507	
Co-operation at work									
Cost of Project	.652								
Project Schedule	.652								
Team work	.606								
Internal communication									
Transparency									.548
Feedback				.677					

Component Matrix^a

15574

Incentives	577			.557		
Compensation system	622		.521			
Reward system						
Technological environment		619	.544			
Workload						
Individuality	577			.557		
Decision making	622		.521			
Client		.722				
Top management support	.612					

Extraction Method: Principal Component Analysis.

a. 9 components extracted.

			ited Compo						
				Com	ponent				
	1	2	3	4	5	6	7	8	9
Leadership effectiveness									.594
Encouragement							.604		
Organizational policy							508		
Organizational Culture			.952						
Working condition						.948			
Project team		.952							
Performance deadlines							522		
Co-operation at work									738
Cost of Project	.949								
Project Schedule	.949								
Team work	.601								
Internal communication									
Transparency								.813	
Feedback							.716		
Incentives					.923				
Compensation system				.897					
Reward system							.506		
Technological		.952							
environment		.952							
Workload								.666	
Individuality					.923				
Decisionmaking				.897					
Client			.952						

Rotated Component Matrix^a

Top management support				.948				
---------------------------	--	--	--	------	--	--	--	--

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 12 iterations.

S.NO	Factor name	Factor loading
1	Cost of project and Project schedule	0.949
2	Project team and technological environment	0.952
3	Organizational Culture and Client	0.952
4	Participative decision-making and Compensation system	0.897
5	Incentives and individuality	0.923
6	Top management support and working condition	0.948
7	Feedback	0.716
8	Transparency	0.813
9	Leadership effectiveness	0.594

The PRINCIPAL COMPONENT MATRIX gives the component matrix which is rotated using the VARIMAX rotation technique which gives the ROTATED COMPONENT MATRIX. Rotation of factors helps in the better interpretation of factors. Since the first factor in the ROTATED COMPONENT MATRIX is heavily loaded with training and ongoing.

Factor loading Value of 0.949 which is the highest for the first factor the first factor represents cost of project and project schedule. The second factor is heavily loaded with Project team and technological environment (0.982) hence factor 2 represents Project team and technological environment and thus the subsequent factors can be interpreted based on their Eigen value. The final list of 09 factors which collectively account for 78 % of the variance in the data is shown below.

Data was collected from 67 IT employees based on convenience and snowball sampling from Hyderabad Campuses of Information Technology Companies who have been listed in NASSCOM. The hypotheses which have been formulated are tested using SPSS software and the results have been arrived at.

Hypotheses:

1. Cost of project: In the literature of project management, cost is expressed as monetary value (Frame 2002). Cost management in project is important and it includes the process of resource planning, estimation of project, budgeting and controlling of the project within the approved budget.

HO: There is no significant association between designation and employee's opinion towards the cost of project.

	Crosstab										
			0	Cost of project							
			Strongly disagree	disagree	agree						
	Applyst programmer	Count	11	9	0	20					
	Analyst programmer	% within Designation	55.0%	45.0%	0.0%	100.0%					
	Assoc Consultant	Count	10	10	1	21					
Designation	ASSUC COnsultant	% within Designation	47.6%	47.6%	4.8%	100.0%					
Designation	Манадал	Count	8	7	0	15					
	Manager	% within Designation	53.3%	46.7%	0.0%	100.0%					
	Systems Engineer	Count	4	7	0	11					
	Systems Engineer	% within Designation	36.4%	63.6%	0.0%	100.0%					
	Total	Count	33	33	1	67					
	TULAI	% within Designation	49.3%	49.3%	1.5%	100.0%					

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	3.325ª	6	.767
Likelihood Ratio	3.449	6	.751
N of Valid Cases	67		

a. 4 cells (33.3%) have expected count less than 5. The minimum expected count is .16.

From the above table chi square is not significant (sig. value is greater than 0.05), no evidence to reject null hypothesis. It means that there is no significant association between designation and their opinions towards the cost of project.

2. Project schedule: The project schedule plays a major role in success of a project. Detailed project schedule is required for understanding and mitigating the project risk. In the project schedule, there are chances of risk in areas of estimated durations, assumptions made which may turn out to be inaccurate.

HO: There is no significant association between designation and employee's opinion on effectiveness of project schedule.

	Crosstab									
				Project S	Schedule		Total			
				disagree	agree	Strongly				
			disagree			agree				
	Analyst programmer	Count	11	5	4	0	20			
	Analyst programmer	% within Designation	55.0%	25.0%	20.0%	0.0%	100.0%			
	Assoc Consultant	Count	10	4	7	0	21			
Designation	ASSOC COnsultant	% within Designation	47.6%	19.0%	33.3%	0.0%	100.0%			
Designation		Count	6	2	6	1	15			
	manager	% within Designation	40.0%	13.3%	40.0%	6.7%	100.0%			
	Systems Engineer	Count	3	1	5	2	11			
	Systems Engineer	% within Designation	27.3%	9.1%	45.5%	18.2%	100.0%			
	Total	Count	30	12	22	3	67			
	TULAT	% within Designation	44.8%	17.9%	32.8%	4.5%	100.0%			

Chi-Square	Tests
------------	-------

	Value	Df	Asymp. Sig. (2-
			sided)
Pearson Chi-Square	10.947ª	9	.279
Likelihood Ratio	10.984	9	.277
N of Valid Cases	67		

a. 11 cells (68.8%) have expected count less than 5. The minimum expected count is .49.

From the above table chi square is not significant (sig. value is greater than 0.05), no evidence to reject null hypothesis. It means that there is no significant association between designation and their opinions on project schedule.

3. Project team: Though project manager is primarily responsible for risk management in project, it's a collective responsibility of all employees who involved in the project. The project team should be competent to handle risk assessments effectively. The team must be pro-active, coordinate and address risk challenges involved in project.

HO: There is no significant association between designation and their opinions on efficiency of project team in risk management.

Crosstab						
			Project team			Total
			Strongly	disagree	Agree	
			disagree			
Analyst programmer	Count	1	15	4	20	
	Analyst programmer	% within Designation	5.0%	75.0%	20.0%	100.0%
Assoc Consultant Designation	Acces Consultant	Count	2	16	3	21
	ASSUC COnsultant	% within Designation	9.5%	76.2%	14.3%	100.0%
	Count	3	11	1	15	
	Manager	% within Designation	20.0%	73.3%	6.7%	100.0%
	Systems Engineer	Count	0	8	3	11
		% within Designation	0.0%	72.7%	27.3%	100.0%
Total		Count	6	50	11	67
		% within Designation	9.0%	74.6%	16.4%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2-
			sided)
Pearson Chi-Square	5.274ª	6	.509
Likelihood Ratio	5.904	6	.434
N of Valid Cases	67		

a. 8 cells (66.7%) have expected count less than 5. The minimum expected count is .99.

From the above table chi square is not significant (sig. value is greater than 0.05), no evidence to reject null hypothesis. It means that there is no significant association between designation and their opinions on project team efficiency in handling the risk management in project.

4. Technological environment: Technology plays a major role in success and failure of the project. Even, the technology enhances the quality of the project. The technological environment supports the project with better resources, systems and data which reduce the risk and contributes towards the completion of the project in time.

HO: There is no significant association between designations and their expectations at effectively managing potential technology risks.

Crosstab						
		Technological environment			Total	
			Strongly	disagree	agree	
			disagree			
	Count	1	15	4	20	
	Analyst programmer	% within Designation	5.0%	75.0%	20.0%	100.0%
A	Assoc Consultant	Count	2	16	3	21
Designation	Assoc Consultant Designation Manager	% within Designation	9.5%	76.2%	14.3%	100.0%
Designation		Count	3	11	1	15
		% within Designation	20.0%	73.3%	6.7%	100.0%
Systems Engineer	Systems Engineer	Count	0	8	3	11
	Systems Engineer	% within Designation	0.0%	72.7%	27.3%	100.0%
Total		Count	6	50	11	67
		% within Designation	9.0%	74.6%	16.4%	100.0%

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	5.274ª	6	.509
Likelihood Ratio	5.904	6	.434
N of Valid Cases	67		

a. 8 cells (66.7%) have expected count less than 5. The minimum expected count is .99.

From the above table chi square is not significant (sig. value is greater than 0.05), no evidence to reject null hypothesis. It means that there is no significant association between designation and their expectations at effectively managing potential technology risks.

Conclusion

The results indicated primarily that whether risks involved in IT organizations are of internal or external. The study mainly contributed to identification of risk factors from various areas of knowledge. According to the experienced IT employees, the sources of risk are different in IT sector and business activities have expanded globally where the concept of sustainability risk management is gaining priority to avoid risk.

Though corporate world is practicing various risk management strategies to face uncertainty and threats, to face uncertainty and current risks in IT business, more sophisticated approach is needed.

Cost of project, project schedule, project team, technological environment, organization culture, nature of client, participative decision making system and compensation system are some of important factors that have been identified from the study that are believed to instill risk management at all levels irrespective of the designation. The processes of managing risk and uncertainty are important from the sustainable project management perspective (Wang et al. 2020; Zaleski and Michalski 2021). The results support the importance of sustainable risk management in present global scenario.

References

- Ahn, Sungjin, Taehui Kim, and Ji-Myong Kim. 2020. Sustainable Risk Assessment through the Analysis of Financial Losses from Third-Party Damage in Bridge Construction. Sustainability 12: 3435.
- Biolcheva, P. (2020). Trends in the development of risk management. Trakia Journal of Sciences, 18(1), 417–421. https://doi.org/10. 15547/tjs.2021.s.01.069.
- Becker, K., & Smidt, M. (2016). A risk perspective on human resource management: A review and directions for future research. Human Resource Management Review, 26(2), 149–165.
- Belinskaja, L., & Velickiene, M. (2015). Business risk management: Features and problems in small and medium-sized trading and manufacturing enterprises. European Scientific Journal, 2, 30–58
- Crockford, G. N. (1982). The bibliography and history of risk management: Some preliminary observations. Geneva Papers on Risk and Insurance, 7, 169–179.
- Dreyer, P., Jones, T., Klima, K., Oberholtzer, J., Strong, A., Welburn, J. W., & Winkelman, Z. (2018).
 Estimating the global cost of cyber risk. Research Reports RR-2299-WFHF, Rand Corporation.
- Dudin, M. N., Frolova, E. E., Lubenets, N. A., Sekerin, V. D., Bank, S. V., & Gorohova, A. E. (2016). Methodology of analysis and assessment of risks of the operation and development of industrial enterprises. Calitatea, 17(153), 53.
- Osuszek, L., & Ledzianowski, J. (2020). Decision support and risk management in business context. Journal of Decision Systems, 1–12.
- Settembre-Blundo, D., González-Sánchez, R., Medina-Salgado, S. et al. Flexibility and Resilience in Corporate Decision Making: A New Sustainability-Based Risk Management System in Uncertain Times. Glob J Flex Syst Manag 22, 107–132 (2021). https://doi.org/10.1007/s40171-021-00277-7

- Tiwari, P., & Suresha, B. (2021). Moderating role of project innovativeness on project flexibility, project risk, project performance, and business success in financial services. Global Journal of Flexible Systems Management, 22(3), 179–196.
- Wang, Yuzheng, Lei Nie, Min Zhang, HongWang, Yan Xu, and Tianyu Zuo. 2020. Assessment of Debris Flow Risk Factors Based on Meta-Analysis—Cases Study of Northwest and Southwest China. Sustainability 12: 6841.
- Yoon, J., Talluri, S., Yildiz, H., & Ho, W. (2018). Models for supplier selection and risk mitigation: A holistic approach. International Journal of Production Research, 56(10), 3636–3661