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Abstract 
 

Diabetes mellitus is a group of chronic metabolic conditions which result from defective insulin secretion, insulin action or 

both.In the type 1 and type 2 diabetes mellitus cardio-renal injury development are frequent.However,in diabetes pathology, 

inhibition of SGLT1 results in an increase glucose homeostasis by decreasing dietary glucose absorption in the intestines.The 

rise plasma renin function, median arterial pressure and renal vascular resistance, circulatory and local (intrarenal) activation of 

RAAS, was linked to short-term mild hyperglycemia without glycosuria in early phases.The nicotinamide adenine dinucleotide 

phosphate (NADPH) mediated generation of ROS via activation of Angiotensin II as a deleterious effect of RAAS in the event of 

cardio-renal injury. Diabetes-related cardiovascular (CV) and renal complications can be attenuated by antihypertensive renin 

angiotensin aldosterone system inhibitors (RAAS), especially by inhibitors of the angiotensin converting enzyme (ACE), 

angiotensin receptor blockers (ARBs, etc.).An optimized concepts system for diabetes kidney pathogenesis and its relationship 

with cardiovascular diseases would allow surveillance and pharmacotherapeutics to be developed to reduce the likelihood of 

serious clinical cases and early deaths. Therefore, the aim of the study to explore the exact molecular insight of RAAS blocker 

specifically ARBs in the prevention of diabetes and its cardio-renal injury. 
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1. Introduction 

Diabetes mellitus is a group of chronic metabolic conditions which result from defective insulin 

secretion, insulin action or both. The importance of insulin, as an anabolic hormone, results in metabolic 

abnormalities in carbohydrates, lipids and proteins. Low insulin levels at the insulin-receptor level, signal 

transduction mechanism, or effector enzymes or genes are triggered by these metabolic abnormalities, 
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in order to meet sufficient response and/or insulin resistance of tissues of target, mostly of skeletal 

muscles, adiposal and to a lesser degree of liver.The classical diabetes classification introduced in 1997 

by the ADA as Type 1, Type 2, Other Type and gestational diabetes mellitus (GDM) remains the best 

accepted and adopted classification(1).Diabetes type 1 accounts for 5%-10% of individuals experiencing 

diabetes disease andin children and young people Type 1 diabetes accounts for 80 -90% of diabetes(2, 

3). Type 1 diabetes is caused by the loss of β pancreas cells due to autoimmune activation including T- 

cell mediated inflammatory response (insulitis) as well as a humoral (B cell) response(4- 

6).Autoantibodies against the cells of pancreatic islets are the hallmark of type 1 diabetes, although 

their function in disease pathogenesis is not apparent. These autoantibodies include islet-cell 

autoantibodies, insulin autoantibodies (IAAs), decarboxylase glutamic acid (GAD, GAD65), tyrosine 

phosphatases (IA2 and IA2β) proteins, and zinc transporters protein (ZnT8A)(7). 

According to a 2013 IDF survey, a global prevalence of diabetes in adults (20-79), with 14 million men 

over women (198 million men vs 184 million women), a majority between 40-59 year olds, was 8.3% 

(382 million people), with an estimated increase in numbers above 592 million by 2035 with a global 

prevalence of 10.1%(8). Over 90%-95% of patients with diabetes belong to this type and most of them 

are adults. Insulin resistance in type 2 patients with diabetes raises insulin requirements in tissues 

targeted by insulin. In addition to resistance to insulin, the elevated insulin demand of pancreatic β cells 

could not be fulfilled due to defects in cells' function(9). Type 2 diabetes mellitus(T2DM) is a strong and 

classic risk factor for CKD and AKI and offers a good model to research the association between 

cardiovascular and renal diseases. AKI episodes have an increased risk for CKD, cardiovascular 

complications and overall death(10-16). In addition, Pinier et al.(17)highlighted a complex connection 

between AKI and CKD and acute, chronic cardiovascular events and mortality in patients with type 2 

diabetes. In T2DM patients, the mortality rates are about double those without T2DM(18) and their risk 

for cardio-renal damage can be largely increased(19, 20).In T2DMpatients, those with hypertension, and 

those who developed CKD, cardiovascular accident rates and related mortality were higher. Up to 18% 

of patients were developed with CKD after 4 years, but surprisingly, short-term (1 year) but non-long- 

term (4 years) AKI episodes were found to have an effect on CKD development or mortality and 

emphasize the importance of classical risk factors such as diabetes mellitus(21). The main aetiologic 

factor responsible for the progression of diabetic kidney disease is hyperglycemia. Multiple 

pathophysiologic disorders (including high blood pressure, changed tubuloglomerular response, renal 

hypoxia, lipotoxicity, podocyte damage, inflammation, mitochondrial impairment, compromised 

autophagy and increased sodium hydrogen exchange activities) lead to progressionary glomerular 

sclerosis and the decline to glomerular filtration rate after hyperglycaemia has been identified(22).The 

quantitative contribution of these anomalies and their function in type 1 and type 2 diabetes mellitus to 

the development of cardio-renal injury remains. 

Diabetes-related cardiovascular (CV) and renal complications can be attenuated by antihypertensive 

renin angiotensin aldosterone system inhibitors (RAAS), especially by inhibitors of the angiotensin 

converting enzyme (ACE), angiotensin receptor blockers (ARBs, etc.), and probably direct renin inhibitors 

(DRIs).The rise plasma renin function, median arterial pressure and renal vascular resistance, circulatory 

and local (intrarenal) activation of RAAS, was linked to short-term mild hyperglycemia without glycosuria 

in early phases(23).A prospective research emphasize higher FPG and insulin resistance at the baseline 

in multi-ethnic individuals with type 2 diabetes mellitus, higher aldosterone and PRA and higher risk for 
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type 2 diabetes mellitus incidents over 10.5 years(24).For instance, the Miller study(25) showed 

significantly higher arterial pressure during hyperglycemia than euglycemic conditions, and that the 

arterial pressure was well susceptible to losartan potassium therapy, while the losartan therapy 

response during euglycemia was minimal.In addition, Osei and his colleagues(26) demonstrated 

promising responsiveness to captopril and eprosartan during hyperglycemia, indicating that 

hyperglycemia contributes to a rise in the renal vascular tone induced by Ang II.An optimized concepts 

system for diabetes kidney pathogenesis and its relationship with cardiovascular diseases would allow 

surveillance and pharmacotherapeutics to be developed to reduce the likelihood of serious clinical cases 

and early deaths. Therefore, the aim of the study to elucidate the exact molecular explanation of RAAS 

blocker specifically ARBs in the prevention of diabetes and its cardio-renal consequences. 

2. Selection of literature review 

Articles have been accessed by searching for the literature in Proquest,ScienceDirect, Cochrane, Pub 

Med, Science Web, Embase, Mendeley and Springer, by filtering the related reference lists by hand. 

While multiple keywords were used in addition to the literature review such as "Renin angiotensin 

aldosterone system," "Epidemiology of diabetes”, “Types and pathophysiology in of diabetes", 

"Involvement of sodium glucose transporter in diabetes", "Bilirubin role in diabetes" “Biological activity 

of RAAS”, “Potential of RAAS blockers on SGLT mediated glucose absorption”, This article is for 

publications in English. Reference lists are also scanned for articles not included on the initial quest. 

3. Overview of Renin angiotensin aldosterone system 

Interrelated hemodynamic and neurohormonal pathways including the sympathetic nervous system 

(SNS), RAAS, and the induction of endotheline and arginine vasopressin systems have been involved in 

cardiorenal syndrome(27).Cardio-renal damage progress through renal perfusion downregulation that 

induces renin secretion, which in turn enables RAAS followed by SNS activation(28). Over-activation of 

RAAS can cause metabolic changes which impact both BP and insulin resistance, by raising 

vasoconstriction, increasing sodium in the kidney and stimulating the secretion of the aldosterone 

hormone(29) andIncreased aldosterone levels are linked to resistance to insulin and type 2 diabetes 

mellitus event.RAAS initiation take place by releasing the pro-renin, is distinguished as a prohormone 

that that convert into active renin, the rates limiting enzyme that controls the homeostasis of the 

kidneys(30).Prorenin is formed in response to many factors, including decreased kidney perfusion, 

activation of the sympathetic nervous system, and reduced sodium distribution in the macula 

densa(31).The cascade of the enzyme initiates the synthesis from circulating, mostly hepatic 

angiotensinogen of the very inactive decapeptide angiotensin I (32).The non-specific enzyme 

angiotensin-converting (ACE) is then processed to Angiotensin II by angiotensin I(33).Although the 

circulating RAS is essential for the systemic control of cardiovascular tissue, activation of this tissue 

altered local functions with the synthesis of Ang II, and may therefore directly affect endothelium and 

smooth muscle cells independently of the endocrine effects of this tissue on systemic hemodynamics. 

The effects of angiotensin II, primarily by angiotensin type 1 receptors, include vascular inflammation 

and oxidative damage(34). The intense sodium avidity and ventricular reshaping of RAAS are 

malfunctioning responses to altered haemodynamics, sympathetic signals and progressive renal 

dysfunction(35). The nicotinamide adenine dinucleotide phosphate (NADPH) mediated generation of 

ROS via activation of Angiotensin II as a deleterious effect of RAAS in the event of cardio-renal 
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injury(36).Angiotensin II is theoretically involved in vascular inflammation through a pathway of a 

nuclear factor kappa B (NF-kB), which causes the formation of adhesion molecules(37, 38) (Figure 1). 

 
Figure1: Pathophysiological disturbance of RAAS in diabetes mediated liver cardiac and renal injury 

 
 

4. Involvement of SGLT in diabetics 

12 members were found in the SLC5A gene family. Sodium-glucose cotransporter 1 (SGLT1), first 

detected in intestinal epithelial cells, reveals the workings of the cotransporters (SLC5A1)(39).Expression 

of SGLT1 mRNA in different human tissues including the kidney, muscles of the skeleton, liver, lung, 

cardiac cell, trachea, uterus cervix, stomach, mesenteric adipose tissue, pancreas alpha cells and brain is 

observed by RT-PCR(40-43).SGLT1 is also confirmed in cholangiocytes(44) where glucose reabsorption 

from bile is facilitated.In myocardial ischemia, SGLT1 is also increased by 2 to 3(45). Furthermore, 

elevation of the blood glucose after meals has an elevated chance of diabetes complications(46).The risk 

of cardiovascular disease is linked with post-prandial hyperglycemia; measures to avoid glucose 

transportation in diabetics are also used in cardiac disease therapies. The small intestine is the main 

place for absorption of the dietary glucose mainly by SGLT1 on the boundary membranes of the 

brush(47, 48).Diabetes has not fully known the impact on intestinal SGLT1 expression. Some studies 

have shown that expression of gastrointestinal SGLT1 and transport of glucose are enhanced due to 

T1DM caused by streptozotocine in rodents(49-51). 

LIK066 (licogliflozin) is an agent for dual SGLT1/2 that shows beneficial aspects in metabolic hormone 

profiles with increased GLP-1, PYY and glucagon levels and decreased levels of GIP, insulin, and blood 

glucose(52, 53).A number of compounds have been developed regarding selective SGLT1 inhibition. The 

most selective inhibitor of the SGLT1is, actually, ~300times selective, Mizagliflozin (also known as DSP- 

3235 or KGA-3235) over SGLT2.Inhibition of SGLT1 results in an increase glucose homeostasis by 

decreasing dietary glucose absorption in the intestines and increasing the release of incretin like 



Nat. Volatiles & Essent. Oils, 2021; 8(4): 15722-15733 

15726 

 

 

 

glucagon-like peptide-1(54, 55). Inhibition SGLT1 inhibition is of limited glucosuric influence in the 

normal kidney and increased in diabetes and during SGLT2 inhibition, which deliver more glucose to 

SGLT1 in late proximal tubule.It was interesting, in a recent randomized T2DM patient study, that 

canagliflozin, a selective inhibitor for SGLT2, was administered in advance of meals and improved 

plasma GLP-1 levels. While canagliflozin is approximately 260 times more targeted to SGLT2 than to 

SGLT1, intestinal glucose absorption was stated to have been inhibited by the concentration of intestinal 

lumen 10 times as high as the IC50 of SGLT1(53, 56). 

5. Potential of renin angiotensin aldosterone system blocker mediated correction of SGLT activity 

A new analysis of the rodents revealed the defensive role of bilirubin against DN through reduction of 

oxidative stress through deregulating renal NADPH Oxidase. Bilirubin is believed to be a powerful 

endogenous antioxidant(57, 58).However, the function of high concentrations of bilirubin in diabetes is 

uncertain.The authors found during a significant 2016 study that a marginally raised bilirubin 

concentration has a protection effect on a number of disorders, including cardiovascular disease and 

diabetes, correlated with enhanced oxidative stress, approaching altered bilirubin metabolism may be 

considered a possible biomedical strategy to ameliorate a variety of symptoms.The relationship 

between the amount of bilirubin and the prevalence, development and prognosis of the disease has 

been studied.In various disorders, including antherosclerosis, cancer and diabetes nephropathy, bilirubin 

has been shown to inhibit oxidative stress(59, 60).Although increased concentrations of bilirubin 

decreased pancreas β-cells damage caused by streptozotocin by reducing oxidative stress(61)or 

increased rodent sensitivity towards insulin(62). A number of studies have previously strengthened the 

correlation between the bilirubin concentration and diabetes complication incidence; multiple tests 

have shown that the elevated bilirubin concentration has a beneficial effect on diabetic 

complications(63). High levels of TBil were found to guard against the development of diabetes in 

Korean men in another four years' retrospect study (n = 5960)(64).According to laboratory trials, 

previous laboratory studies demonstrated that elevated bilirubin has a 26 to 31% decrease in human 

diabetes risk(65, 66).Diabetic patients with Gilbert syndrome(moderate hyperbilirubinemia exists in 5- 

10%) have demonstrated reduced oxidative stress markers and lower diabetic nephropathy and CVD 

risk(67-69).As a standard index of diabetes control, DBil, IBil and TBil have different therapeutic 

effects.Additionally, IBil in plasma is transported to the hepatocytes through albumin, which converts 

IBil to DBil by the UDP-glucuronyl transferase 1A1 enzyme(70). Higher DBil can indicate hepatocellular 

damage while TBil is within the standard(71).In addition, hepatic insulin resistance in healthy subjects is 

linked to enhanced liver enzymes. TBil and IBil were found by several experiments to be more effective 

than DBil to prevent multiple diseases, including stroke, metabolic syndrome and type 2 diabetes 

risk(72-74).Notably, the AGTR1 angiotensin receptor blocker losartane, is biotransformed through UDP- 

glucuronyl transferase 1A1 enzyme that leads to reduce the efficacy of RAAS blockers (75). Thus, 

modulation of bilirubin levels (e.g., clinical strategies that inhibithepatic UGT1A1, is a key enzyme in 

bilirubin conjugation and control that leads to rise in IBil levels) may have protection from the risk of 

T2D may be expected to occur(76-78).The RAAS-blocker induced stabilization of billirubin was observed 

in the historical prospective research of the RENAAL trial, and the experiment further reveals an 

independent inverse correlation between the amount of bilirubin and nephropathy in Type 2 

patients(74). Moreover, bilirubin binds to PPR-alpha leads to regulate the expression of UGT1A1 in late 
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small intestine and other beneficial effect including reduction in body wight, increase insulin sensitivity, 

reduces inflammation and cardiovascular consequences(79-82).On the other hand, RAAS blockers 

induces angiotensin II mediated inhibition of aldosterone and overexpression of SGLT1 that leads to 

inhibit and delayed intestinal glucose absorption along with sodium salt in diabetes(83).SGLT1/2 

inhibition may be beneficial because of the limited efficacy demonstrated by SGLT2 inhibitors in diabetic 

patients with moderate to severe renal impairment(84). However, The UGT1A1 activation through high 

glucose in the late part of small intestine decreased serum conjugated bilirubin levels due to processed 

by the gut microbiome to urobilinoids and stercobilin dramatically in neonatal hUGT1 mice while it did 

not affect the expression of UGT1A1 in the liver thereby hyperbilirubinemia does not occur in 

diabetes(85-87).Similarly, a study considers low fasting concentrations of serum bilirubin (<8.53 μM) as 

an independent indicator of significant cardiovascular adverse effects, including ischemia - 

revascularization of the target vessel(88). The serum bilirubin levels in adipose tissue are negatively 

linked to abdominal obesity and hypertriglyceridemia(89) (Figure 2). 

 

 
Figure 2: Potential of RAAS blockers mediated correction of SGLT activity in diabetic patient 

6. Conclusion 

Bilirubin, like many hormones, travels in circulatory system and enters the target in cells, binds mostly 

PPARα, to produce gene response.This defensive line offered by Bilirubin is evidence that the danger 

fully low levels of this key hormone can potentiate adverse clinical effects, which could contribute to 

cardio-renal injury, for the patients with endocrine, nutritional and metabolic diseases. In various 

studies found that, despite initial decreases in hemoglobin levels, therapy with losartan or irbesartan 

ARBs did not lead to reduced concentrations of bilirubin. SGLT-1, a cotransporter to control of bile 

glucose absorption. Moreover, RAAS blockers induces angiotensin II mediated inhibition of aldosterone 

and overexpression of SGLT1 that leads to inhibit and delayed intestinal glucose absorption along with 
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sodium salt in diabetes.On the other hand, bilirubin binds to PPR-alpha beneficial effect including 

reduction in body wight, increase insulin sensitivity, reduces inflammation and cardio-renal injury. To 

fully understand the therapeutic capability of RAAS Blocker mediated activation of different 

biomolecule, future investigations on bilirubin and its correction of SGLT1 functionality are required. 
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