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Introduction 

Diabetes Melitus (DM) is a common health problem worldwide. International Diabetes Federation (IDF) 

count 90% among all the DM subjects is type 2 diabetes mellitus (T2DM). Still, 79% of all T2DM patients 

are in low-middle income country 1. Therefore, accurate treatment strategy is needed to reduce major 

complication and decrease healthy cost for T2DM treatment. 

T2DM is a chronic disease characteristically by peripheral resistance of insulin, marked by 

increased glucose circulating in bloodstream and glucose intolerant appeared 2. The primary target of 

insulin in peripheral tissue and can act as insulin-mediated glucose uptake major organ is skeletal muscle 
3,4. Up to 80% glucose in hyperinsulinemia-clamp state uptake by skeletal muscle 4,5. Hence, higher 

muscle mass correlated with higher glucose disposal rate in human6. Muscle strength also correlated 

with blood glucose, proven by lower blood glucose during muscle contraction7. Glucose transporter 

(GLUT) dan Sodium dependent glucose transporter-2 (SGLT-2) play a key role in blood glucose disposal 

into skeletal muscle8, and their translocation into sarcolemma was increase in exercised muscle. 

Conversely, they will decreased in unhealthy muscle9, include in T2DM10. In terms of muscle mass, 

higher skeletal muscle index (muscle mass/body weight x 100%) associates with lower incidence of 

T2DM, as high as 96% in men and 121% in women11. Synergistically, each SD higher muscle strength 

associated with 13% lower risk of T2DM 6,12. 

Muscle Metabolism and Nutrition 

Glucose uptake mechanism through GLUT-4 in skeletal muscle can be in two ways, there are 

insulin-mediated involving phosphatidylinositol-3kinase-Akt (PI3K/Akt) signaling pathway13 and 

contraction or hypoxia-mediated involving AMPK pathway14. Binding of insulin by its receptors in 

sarcolemma activate PI3-K and serin/threonine kinase Akt/PKB, then induce translocation of GLUT-4 

transporter from intracellular matrix into sarcolemma and let glucose entered intracellular matrix 

through GLUT-4 to increase glucose disposal rate15. Activation of PI3K/Akt pathway play as a key role in 

insulin-stimulated GLUT-4 translocation. Disturbance in this cascade will perturb glucose uptake into 

skeletal muscle and cause insulin resistance leading to T2DM 13,16. Hypoxia-stimulated glucose uptake is 
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dependent on AMPK activation, which not significantly different between insulin resistance subject with 

healthy subjects 13,17. AMPK is energy sensor molecule activated when AMP/ATP ratio was increased in 

muscle cell, for example in resistance training or cellular stress 18. Activation of AMPK will increasing 

oxidative metabolism and produce ATP as a main energy source. Exercise-induced AMPK activation  will 

regulate GLUT-4 translocation in to sarcolemma and increase glucose disposal from bloodstream 18. 

Otherwise, glucose intake, exercise duration and intensity also regulate GLUT-4 translocation by AMPK 

pathway 19. Therefore, insulin resistance will surely decrease glucose uptake, inhibit oxidative 

metabolism and ATP production. Insulin resistance is very important issue due to for β-cell dysfunction 

catalyst, increased hepatic glucose production, and progression of the disease 13. Insulin resistance was 

the main cause of feeding-stimulated hyperglycaemia 20. Unfortunately, In T2DM glucose uptake by 

skeletal muscle reduced by 60% than healthy muscle 21 

Muscle Mass Regulation 

Skeletal muscle is major organ which can gain (hypertrophy) dan reduced (atrophy) in accordance 

with mechanical and metabolic condition. Skeletal muscle has a satellite cell and its microenvironment 

with myogenic characteristic 22, which its population and efficacy will decreased along with aging 23. 

Hypertrophy stimulus such as exercise or muscle damage will stimulate satellite cell to proliferation 

forms myonuclei and induce hypertrophy 24. Satelite cell’s proliferation capacity in men is higher than 

women, it may be there are more myogenin contained in men’s muscle than women 25,26 This higher 

capacity also can caused by testosterone-stimulated proliferation 26 which not found in women. This 

condition evidenced by other previous in vivo study with decreased satellite cell number and size by 

testosterone-knockout condition 27. Nutrition intake will improve insulin or insulin-like growth factor 

respond in order to stimulates protein synthesis by activate PI3K-Akt-mTOR pathway and stimulate 

satellite cell proliferation and regeneration along with suppression of protein degradation in skeletal 

muscle 28,29. 

 

 

 

 

 

 

 

Figure. Hypertrophy and Atrophy Signaling Pathway in Skeletal Muscle 18 
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Muscle hypertrophy characteristically by increasing both muscle number (hyperplasia) and muscle 

size18. Muscle hypertrophy can occur in stimulated healthy muscle such as exercised muscle (e.g. aerobic 

can induce muscle hypertrophy) 30 or pathology like myotonia congenita 31. IGF-Akt/PKB-mTOR signaling 

play as main pathway in protein synthesis regulation 18,32. Binding of IGF ligand to IGF receptor (IGF-R) 

will activate PI3K, followed by phosphorylation PIP2 to PIP3. Then PIP3 activates Akt that will increase 

protein synthesis through mammalian target of rapamycin (mTOR) activation. mTOR positively regulates 

its downstream target S6K1 dan inhibit 4EBP1. Those two effect leading to increased protein synthesis. 

Other downstream pathway of Akt is inhibition of glycogen synthase inhibition 3b (GSK3) and forkhead 

box O (FoxO) transcription factor. Inhibition of both will reduce inhibiton of protein synthesis through 

PGC-1 and eIF2b 18. Increased stimulation of IGF-Akt/PKB-mTOR pathway also induce satellite cell 

activation and proliferation leading to muscle hypertrophy. Other than those classical pathway, 

hypertrophy also induced due to satellite cell activation via G protein coupled receptors (G-PCR) in Gi2 

subunit 33. Gi2 can bypass Akt and directly regulates S6K1 and GSK3 resulting increased protein 

synthesis. These can occur both in PKC-dependent or HDAC4-dependent pathway 33.  

While, if degradation rate was higher than synthesis of any stimuli, skeletal muscle will reduced in 

size (atrophy). Many stimuli that can induce muscle atrophy are infection 34,35, pathology condition of 

muscle 36,37, and immobilization 38. Ubiquitin proteasome system (UPS) and autophagy-lysosomal system 

coordinate to worsen protein degradation and inhibit protein synthesis resulting muscle wasting 39,40. 

Ubiquitin proteasome system (UPS) plays a “master role” in protein degradation through activation 

FoxO transcriptional factor which also under control of Akt 18,41. Phosphorylation and translocation of 

FoxO in nucleus causing protein breakdown by its downstream molecules, Atrogin-1 and muscle-specific 

ring finger (MuRF) that were part of E3 ligase ubiquitin of UPS. In in vivo study with mice, mRNA 

encoding atrogin-1 and MuRF-1 expression was increase in many study with atrophy stimuli, like long-

time use of glucocorticoid 42,43, TNFα exposure 44,45, starvation 46, denervation 47, malignancy 48, or other 

pathologic condition like ALS, COPD, or tetraplegia 49. Downstream targets of FoxO can induce muscle 

atrophy, such as Foxo1 will increase Atrogin-1 expression through inhibition of IGF indirectly 50,51, Foxo3a 

increase atrogin’s promotors in glucocorticoid exposure, and Foxo 4 increase atrogin-1 expression 

through TNF- exposure 52. Increase Interleukin-6 (IL-6) in bloodstream also induce muscle atrophy, by 

activate STAT pathway. Phosphorylation of STAT will activate JAK/STAT pathway and increase catabolic 

rate 53 or by ataudapat pula melalui NFB-dependent pathway 54. Therefore, given IL-6 inhibitor will 

promotes muscle regeneration in muscle atrophy condition 55,56.  

Pathophysiology of Diabetes Mellitus 

T1DM is hyperglycaemichypoinsulinaemia caused by mostly autoimun attack pancreatic -cell 57. 

Without its optimal condition in producing insulin, impossible for body to maintain blood glucose in 

normal range. As a main organ in glucose disposal, healthy skeletal muscle can uptake glucose in non-

insulin mediated 58. Despite of  -cell destruction, in T1DM also there is mitochondrial dysfunction in 

skeletal muscle marked by decreased oxidative gene expression in mitochondrial DNA. It will worsen 

glucose control in hypoinsulinaemia condition in T2DM 59. In contrary with T1DM, in T2DM 

hyperglycemia result from peripheral insulin resistance followed by hypersecretion of insulin by 
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pancreas as a compensatory manner resulting euglycemia hyperinsulinemia condition60. This 

compensation will be followed by insulin deficiency as -cell become fatigue and destructed by 

inflammatory reaction as primary factor of T2DM 61. Insulin resistance on liver allow gluconeogenesis 

keep going although hyperglycemia progressed 60, while insulin resistance on skeletal muscle will 

decrease glucose uptake rate 62. Suppressed insulin secreation in T2DM also caused by decrease of 

intestinal insulin regulators such as gluagon-like peptide-1(GLP-1) by L-cell in ileum 63. Directly, insulin 

can act as negative feedback in glucagon secretion, lower insulin flux will increased glucagon to cause 

hyperglicaemia60. 

Impaired of Muscle Function in T2DM 

It’s clearly understood that T2DM altered skeletal muscle regeneration and performances 64-67. In 

T2DM, skeletal muscle mass decrease as high as 6% per decade 68, and poor glycaemic control 

associated with lower muscle mass 69. Other than mass, muscle strength in T2DM subjects 7-8% weaker 

than healthy subjects 66,70-73. Even with same muscle mass, muscle strength in upper and lower extremity 

of T2DM subjects is linear with higher HbA1c and disease duration 74,75 and decreased muscle quality in 

T2DM is strongly correlated with mortality 70. In T2DM, extensor and flexor muscle strength of knees 

and ankles was impaired compared with those without diabetes 72. Still, compared with those without 

T2DM, people with T2DM seems to walk slower, in shorter steps, and show more gait variability inlinear 

of turn path, despite of without neuropathy 76,77. Muscle tremor was significantly greater in T2DM 

people, indicating deficits of central motor control 77.In T2DM with neuropathy complication, postural 

stability, length of sway, and balance was impaired, especially in men than women 78,79. In previous in 

vitro study, molecular mechanism of muscle atrophy in T2DM patients is complex and involve many 

molecules inhibiting protein synthesis, stimulate degradation and impair cell quality 80. Even though, 

paradoxical findings found that skeletal muscle mass in hyperinsulinemia T2DM patient was indifferent 

with healthy subjects 81,82, which probably caused by inhibition of TP53INP2, a molecule for protein 

degradation, by insulin resistance 83. However, insulin resistance will cause marked disturbances in 

protein synthesis and muscle regeneration 84. Other than directly caused by insulin deficiency, decrease 

in muscle mass and quality also caused by hyperglycaemia in T2DM as many population study 74,85,86. 

Moreover, hyperglycaemia perturbing atrophy muscle for recovery 87. In T2DM skeletal muscle, there is 

impaired mitochondrial content and function following insulin resistance result in perturb AATP 

production essentials for protein synthesis 88-90-, as mitochondria is the most affected organelles 91-93. In 

low glucose level,  normal muscle will switch ATP production using fatty acid instead of glucose 

(metabolic flexibility). But in T2DM muscle, metabolic flexibility was impaired and ATP production 

decreased 64,90,94. Lower of fatty acid utilization will let fat to accumulate and infiltrate into skeletal 

muscle and definitely reduce muscle strength in elderly subjects 95. High fat and glucose environment 

will disturbing satellite cell proliferation and muscle regeneration, linear with Fitzpatrick et al 96 and 

Aguiari et al 91, respectively. 

Mass Regulatory Molecular changes in T2DM Muscle  

T2DM-induced muscle atrophy due to oxidative stress and inflammation which disturbing protein 

metabolism 67,97. Study of atrophy signaling genes in T2DM is still preliminary. In T2DM, PI3K/Akt/mTOR 
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pathway is the most suppressed pathway that cause muscle atrophy 80,97. Suppression of Akt in T2DM 

caused by any depletion of insulin by insulin resistance or decreased activators like IGF-1 and increased 

upstream inhibitor like TNF-, IL-6, etc. due to inflammation and oxidative stress 98,99 Reduction of these 

proinflammatory cytokine kan attenuates muscle atrophy signaling in insulin-independent manner as 

described previously 100. Activation of Akt by insulin regulates its downstream regulator of autophagy, 

such as FoxO as transcriptional regulator and Unc-51 Like Protein Activating Kinase 1 (ULK-1) as 

nontranscriptional regulator, which receive their inhibitory signal from mTOR and stimulatory signal 

from AMPK 011,102. In T2DM muscle, insulin resistance and proinflammatory cytokines will suppress 

protein synthesis was by decreased Akt signaling and along with e1F4G and S6K1 as downstream targets 

of mTOR for protein synthesis was decreased in T2DM muscle 103,104. Suppression of Akt signaling will 

induce suppression of FOXO3a phosphorylation which can lead to increase activation of Atrogin1 and 

MuRF1 as components of E3 ligase UPS and promotes protein degradation 105-107. Besides stimulate 

protein synthesis, mTORC1 also stimulates insulin secretion by -cell 108. Even so, sustained activation of 

mTORC1 such in high dose insulin-treated T2DM will cause beta cell exhaustion of their insulin secretion 

capacity and deteriorate glucose metabolism in T2DM 109. There are two major pathway yang play a role 

in protein degradation of skeletal muscle, they are UPS and autophagy system. The UPS play about 50% 

of protein degradation 83,110. In healthy state, insulin will suppresses autophagy signaling through 

Atg1/Ulk1 inhibition by mTORC activation 111 and inhibition of FoxO3 transcription factor by Protein 

Kinase B-mediated phosphorylation 112. But in hyperglycemic state as T2DM, expression of UPS was 

elevated along with elevated number of apoptotic myocyte113, and expression of FoxO1 was 60% higher 

in T2DM 97. Phosphorylation of Ulk1 as a marker of autophagy in skeletal muscle tended to increase in 

hyperglycemic state such uncontrolled diabetes 114. 

Role of Diabetic treatment in skeletal muscle 

Sulfonylurea 

Sulfonylurea is antidiabetic drug acting in closure of ATP-sensitive K channel (KATP)104. In pancreatic -

cell, it will increase insulin secretion. Although, KATP closure can cause -cell  apoptosis and reduced -

cell mass, especially by glibenclamide115,116. In skeletal muscle, administration of glibenclamide in rat in 

vivo study may activate atrophic signaling pathway  through either caspase dependent or independent 
117. But in another in vitro study conducted by Mele et al, there is decreased skeletal muscle protein 

content after 24 hours incubation in sulfonylurea and glinid that may cause skeletal muscle atrophy. 

Among the sulfonylureas, glibenclamide act as the most potent atrophic agent and more effective in 

fast-twitch oxidative fiber than in glycolytic fiber, while Glimepirid has less potent atrophic agent. For 

glinid, the most potent atrophic agent is repaglinide118. In Database of Food and Drug Administration 

Adverse Event Reporting System (FDA-AERS), there are 0.27% human experienced muscle atrophy with 

gibenclamide use, while no atrophy reported in glimepiride and glinid118. 

Biguanide 

Metformin as a insulin-sensitizer improve insulin sensitivity and its potentials in skeletal muscle 119. By 

stimulate mitochondrial biogenesis, metformin can preserve oxidative fiber muscle 120. But it 

contrastwith Wessel et al stated metformin give negative effect on skeletal metabolism by perturb 
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mitochondrial function 121. Metformin as the most used biguanides, act as activators of AMPK122.  An in 

vitro study revealed, activation of AMPK can induce muscle atrophy by activating autophagy signaling 

pathway, such activation of FoxO transcription factor followed by increase expression of atrophic genes, 

MuRF1 and Atrogin1123 and inhibition of mTOR, essential molecule for protein synthesis in cultured 

skeletal muscle124. An opposite result stated in an in vivo study of obesity-induced muscle atrophy in rat, 

metformin can ameliorated muscle atrophy, may be due to regulation of PGC1-FoxO3 pathway 125 and 

control oxidative stress in rat T2DM muscle 126. But still, There is limited in vivo study for metformin-

induced muscle atrophy.  

Thiazolidinedione (TZD) 

Thiazolidinedione is antidiabetic drug as a synthetic ligand of peroxisome proliferator-activated 

receptors (PPARs). It can improve insulin sensitivity by repair PI3K/Akt pathway and reduce caspase-3 

pathway as stimulator of protein degradation 127,128. Theoretically, TZD can improve muscle metabolism 

by reduce muscle fat content and improve lipid metabolism 129. But there are controversial result of in 

human study, weight-loss in nondiabetic subjects pioglitazone has no effect in muscle loss. Resistance 

training can improve muscle loss instead of pioglitazone only 130. But combination of the two give better 

result in women 131. In another study, compared to nondiabetic men, diabetic men given pioglitazone 

has no differences in total lean mass loss in 3.5 years follow up 120 

DPP IV inhibitor 

Dipeptidyl peptidase IV (DPP-IV) inhibitor has beneficial effect on skeletal and heart muscle. DPP-IV 

inhibitor can upregulates translocation of GLUT-4 in skeletal muscle and thus decrease blood glucose 

level. Many studies has been conducted to reveal beneficial effect of DPP-IV inhibitor, such as lower 

inflammatory parameters, enhanced GLP-1 secretion, and improve sarcopenic parameters (Fat-free 

mass, SMI, muscle strength, gait speed) 132,133. In an in vivo study, DPP IV knockout mice show better 

glucose tolerance, enhanced insulin secretion, and reduced incretin degradation 134,135. Moreover, long 

period of DPP IV inhibitor administration can prevent glucose intolerance, obesity, and T2DM in 

diabetogenic streptozotocin-induced mice 136. Because of strong relation between reduced DPP IV and 

GLP-1 activation, it is currently unknown whether beneficial effect of DPP IV inhibitor is direct or indirect 

(through GLP-1 activation) manner 104 

GLP 1 RA 

Glucagon-like Peptide 1 (GLP-1) and incretin is an intestinal hormones to increasing insulin sensitivity 

and -cell anti-apoptotic hormone137,138. Increase of GLP-1 associates with increase of -cell density and 

pancreatic mass in animal model 138. Therefore, GLP-1 receptor agonist has many beneficial effect in 

attenuate T2DM progression, lower body weight by decreased gastric emptying139, and improve insulin 

resistance140 in skeletal and heart muscle. In an in vivo study, GLP-1 agonist can stimulate insulin 

extraction and increase oxygen delivery in a way by increase capillary recruitment via nitric oxide (NO)-

dependent manner  in rat skeletal muscle, improving insulin resistance condition141,142. In in vitro study 

of cultured human 143 and rat 141muscle, GLP-1 agonist increase GLUT-4 expression and glucose disposal 

which this condition worsen by hyperglycemia in T2DM.  
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SGLT-2 Inhibitor  

Sodium/Glucose cotransporter 2 (SGLT-) inhibitor act by prevents reabsorption of glucose in kidney 

inducing glucosuria insulin-independently 104. It has many advantages in preserve cardiovascular and 

kidney function, so it recommended for T2DM patients with cardiovascular or kidney dysfunction 144. 

Insulin-mediated glucose uptake by skeletal muscle increase approximately 18% after 2 weeks-

dapagliflozin treatment 122. In skeletal muscle, it seems SGLT-2 inhibitor has bad effect, this showed in 

several study of diabetes-induced sarcopenia, such chronic use of SGLT-2 inhibitor induced proteolysis 
145, decline SMI after 1-year use of dapagliflozin 146, worse insulin resistance, and significantly higher of 

free fatty acid, ketone bodies and HDL-cholesterol, and decreased SMI 147,148. But opposite result showed 

in several study, such asimproved hand grip strength on T2DM after administration of SGLT-2 inhibitor, 

due to reduced chronic inflammation and adipokine balance 149, reduced body weight and fat mass 

without affecting skeletal muscle mass  150,151. However, further study of in vitro needed to prove effect 

of SGLT-2 inhibitor in skeletal muscle mass. 

Insulin 

Insulin known as potentials agent for protein synthesis in skeletal muscle, as long as insulin sensitivity is 

preserved. Insulin can activate anabolic signaling through PI3K/Akt/mTORC pathway and suppress 

autophagy signaling. Insulin-mediated protein synthesis occur in young adults, but not in older adults, 

may be due to insulin resistance of aging process 152 or reduced blood flow and glucose utilization in 

elder people 153.  But in a human study, insulin can attenuates progression of sarcopenia in T2DM 

marked by higher skeletal muscle index (SMI) compared to non insulin-treated group 154Even so, 

sustained activation of mTORC in high dose insulin-treated T2DM will cause beta cell fatigue and 

deteriorate glycation control in T2DM 109. Over-suppression of autophagy by high dose-insulin also can 

disturb repairment capacity and worsen muscle disease by alter gene expression 103.  

Summary  

T2DM known to be the most high impact metabolic disease globally, such its progression, 

molecular changes, daily life quality, and healthy cost consumed for the treatment. Regulation of 

glucose play a key role to maintain disease progression and health quality. One of the most important 

organ for blood glucose regulation is skeletal muscle. High blood glucose impair its proliferation and 

regeneration, while impaired muscle metabolism will inhibit glucose disposal from bloodstream, 

reciprocally. In T2DM, high blood glucose caused by insulin resistance let muscle to glucose “starving” 

and perturb ATP production, while its hyperglycemia environment and inflammatory respond make 

essentials molecular changes result in inhibit protein synthesis and stimulate protein degradation by 

suppressing PI3K/Akt/mTOR pathway and ubiquitination or autophagy activation, respectively. All those 

mechanisms will result in reduced both muscle cell number and size. Therefore, its important to 

maintain blood glucose in normal range and inhibit inflammatory respond to minimize muscle atrophy in 

T2DM. 
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