

Synthesis, Characterization, Molecular Docking Study And Biological Activity Of Serotonin Derivatives Containing Tetrazole Moiety

Marwa Abdullah Saleh^{1*}, Basma M. Abd Razik² and Karima Fadhil Ali²

¹AL-Dour health care sector, Salah Al-Deen Directorate of Health, Ministry of Health, 34007, Salah Al-Deen, Iraq

²Department of Pharmaceutical Chemistry, College of Pharmacy, Mustansiriyah University, 10001, Baghdad, Iraq

Abstract:

Heterocyclic compounds in which Nitrogen atomes are present have a great importance among pharmaceutical compounds due to their higher activity in medicine. The new tetrazole heterocyclic serotonin derivatives were designed and synthesized through reaction of serotonin Schiff base compounds with sodium azide to form tetrazol compounds II(a-c). whole the end products were identified by physical properties, FT-IR spectroscopy,¹H- NMR spectroscopy. The antibacterial activity for each end product was studied by using the manner of well diffusion and the examined products showed effect against two gram-positive (Staphylococcus aureus and Streptococcus pyogenes) and two gram-negative (Klebsiella and Escherichia coli) bacteria which compared to DMSO as control, and good activity compared to trimethoprim as astandard. For knowing that the resulted compounds interacted well with the receptors of bacteria the molecular docking was used.

Key words: Serotonin, Heterocycles, Tetrazol, Boronic acid, Molecular docking

Introduction

As known among the important things take into account when preparing or synthesizing drugs are their harmless and curative value for the human use. Serotonin (5-hydroxytryptamine or 5-HT) is an indole amine that appears naturally and acts as a neurotransmitter which transfer signals from one neuron to another in our bodies ⁽¹⁾. The chemistry of indoles was progressively studied due to the interesting effects that they have ^(2, 3). It was found that indoles compounds have a variety of clinical uses which include anti-inflammatory. ⁽⁴⁾, antibacterial. ⁽⁵⁾, antiviral ^(6, 7), anti- TB. ⁽⁸⁾ and antitumor effects ⁽⁹⁾. Certainly most of Compounds in which heterocycles are their main structure have great and very important uses in medicinal chemistry. Tetrazoles are heterocyclic compounds composed of five-member Nitrogen-rich structures in which one atom of carbon is linked to four atoms of nitrogen and all are organize as a planate ring ^(10, 11). The conjugated nitrogen rich structure of tetrazoles gives them both acceptor and

donor electronic properties ⁽¹²⁾. Because of their interesting structures and good pharmacokinetics compounds of tetrazole and correspondent compounds regarded as crucial pharmacophores in medicinal chemistry. The main pharmacological uses include anti-allergic, antihypertensive, anti-ulcer, anti-analgesic, anticancer, antimicrobial and anti leishmanial activity (13,14,15,16,17)). They also have synthetic uses which include a precursor for the synthesis of active explosives, propellants and pharmaceuticals ^(18, 19). In general it is found that the derivatives of tetrazole are used as carboxylic surrogates, bioisosteres of carboxylic acids (20, 21) and lipophilic spacers in pharmaceuticals. The derivatives of tetrazole which have antimicrobial effect also found to have anti nociceptive effect ⁽²²⁾. Boronic acids are one of the most studied boron compounds in the organic chemistry ⁽²³⁾. In general boronic acids have alkyl groups are less acidity than boronic acids have aryl groups ^(24, 25, 26). The main biological uses of boronic acids are building blocks and as a sensor for many organic materials ^(27, 28) It also used in electrophoresis techniques (²⁹⁾ In medicinal chemistry boronic acids have anticancer -activity ⁽³⁰⁾, anti-bacterial activity ⁽³¹⁾ and anti-viral activity ⁽³²⁾. Molecular docking is a manner of drug design that depends on the structure of drug. It promotes the molecular interaction and forecast the mode of binding and affinity between ligands and receptors. (33). There are different types of operations of molecular docking, the differentiation are resulted from the ligand and target molecules which are either flexible or rigid, these types include flexible ligand docking in which the molecules of the target are rigid, rigid body docking in which molecules of target and ligand are rigid and flexible docking that deal with flexible molecules of the ligand and target (34, 35). The main uses of molecular docking include Lead optimization ⁽³⁶⁾ Hit identifications ⁽³⁷⁾ and drug-DNA interaction.⁽³⁴⁾. In this our current research, we designed, synthesized, and evaluated in vitro the antimicrobial activity of new Serotonin Derivatives containing tetrazole Moiety

Materials and Methods:

Chemicals and Instrumentation

Serotonin HCL and boronic acid aldehydes were gained from Zhejiang Medicine Co.Ltd., Xinchang pharmaceutical Factory (China),other chemicals were gained from Merck(Germany),Fluka (Germany), Alfa (Germany), BDH (UK) chemicals companies. The main instruments used for characterizing the synthesized products were Stuart (SMP30) apparatus for recording the melting point , 6100 Type A Simadzu spectrometer in KBr discs for recording the FT-IR spectrum, Bruker (Varian) 500 MHz instrument in DMSO-D6 as a solvent and TMS as internal standard for characterizing ¹H-NMR spectrum.

Methods:

The public method for the synthesis of derivatives of schiff base I (a-c):

The synthesis of Schiff base derivatives was started by adding a solution of serotonin hydrochloride (1.0634gm, 0.005mol) in (30ml) of absolute ethanol little by little to a solution of aldehyde derivatives (4-dimethylamino benzaldehyde, 4-chlorobenzaldehyde, and 2-formyl-4- methoxyphenyl boronic acid) in (20ml) of absolute ethanol. As a catalyst (7) drops of glacial acetic acid was added and the mixture then refluxed for (20hrs) at (80°C), cooled and synthesized precipitate was collected by filtration, washed with the cold water and finally recrystallized from ethanol.

3-(2-((4-(dimethylamino) benzylidene) amino) ethyl)-1H-indol-5-ol (la):

(Orange)(70%yield);mp200-204°C;IR(KBr) v (cm⁻¹):3221.23(OH stretching of indole), 3259.81 (NH stretching of indole),1651.12(C=N stretching of Schiff base),2829.67(C-H stretching of CH₃);¹H-NMR (DMSO-d₆,500 MHz): δ 8.67(S,1H,H-C=N of Schiff base), δ 10.58(S,1H,O-H of indole), δ 10.65(S,1H,N-H of indole), δ 3.02(S,6H,CH₃ of N(CH₃)₂ group, δ 7.05-7.67 (complex, 7H,C-H of aromatic ring).

3-(2-((4-chlorobenzylidene) amino) ethyl)-1H-indol-5-ol (lb):

(Off white)(75%);mp 254°C;IR(KBr) v(cm⁻¹):3217.37(OH stretching of indole);3435.34(NH stretching of indole);1626.05(C=N stretching of Schiff base);¹H-NMR(DMSO-d₆,500MHz): δ 8.82(S,1H,H-C=N of Schiff base), δ 9.70(S,1H,O-H of indole), δ 10.54(S,1H,N-H of indole), δ 6.64-7.55(complex,7H,C-H of aromatic ring).

(2-(((2-(5-hydroxy-1H-indol-3-yl) ethyl)imino)methyl)-4-methoxyphenyl)boronic acid (Ic):

(Dark green)(80%);mp 220-223°C;IR(KBr) v (cm⁻¹):3369.75(OH stretching of indole); 1365.65 (B-O stretching of boronic acid);3429.55(NH stretching of indole);1606.76(C=N stretching of Schiff base);¹H-NMR(DMSO-d₆,500MHz): δ 8.35(S,1H,H-C=N of Schiff base), δ 7.94(S,2H,O-H of boronic acid), δ 10.26(S,1H,O-H of indole), δ 6.64-7.40(complex,6H,C-H of aromatic ring), δ 3.83(S,3H,CH₃ OF (OCH₃) group).

5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods II (a-c):

Tetrazol compounds were synthesized by adding (0.002) M (0.13004)g of sodium azide dissolved in (10ml) of absolute ethanol to (0.002)M of synthesized Schiff base I(a-c) dissolved in (10ml) of absolute ethanol. The mixture was then refluxed for (30) hours at 80 $^{\circ}$ C after that the solvent was removed and resulting product washed with cold distilled water and re-crystallized with ethanol.

3-(2-(5-(4-(dimethylamino) phenyl)-2,5-dihydro-1H-tetrazol-1-yl)ethyl)-1H-indol-5-ol (IIa):

(Yellowish green)(76%);mp 211°C;IR(KBr) v (cm⁻¹):3209.66(OH stretching of indole);3263.66 (NH stretching of tetrazol and indole rings);1068.6(N-N stretching of tetrazol);1464.02(N=N stretching of tetrazol);2949.26(C-H stretching of CH₃);3136.36(C-H stretching of aromatic);¹H-NMR (DMSO-d₆,500 MHZ): δ 6.60(S,1H,N-H of tetrazol ring), δ 8.31(S,1H,C-H of tetrazol ring), δ 3.07(S,6H,CH₃ of N(CH₃)₂ group, δ 6.61-7.88(complex,7H,C-H of aromatic ring), δ 10.60(S,1H,O-H of indole ring), δ 10.66(S,1H,N-H of indole ring).

3-(2-(5-(4-chlorophenyl)-2,5-dihydro-1H-tetrazol-1-yl)ethyl)-1H-indol-5-ol (IIb):

(Light brown)(73%);mp 254°C;IR(KBr) v (cm⁻¹):3259.81(OH stretching of indole ring);3394.83(N-H stretching of tetrazol and indole rings);1089.82(N-N stretching of tetrazol ring);1456.3(N=N stretching of tetrazol ring);3057.27(C-H stretching of aromatic ring);¹HNMR(DMSO-d₆,500 MHZ): δ 6.55(S,1H,N-H of tetrazol ring), δ 7.78(S,1H,C-H of tetrazol ring), δ 6.57-7.57(complex,7H,C-H of aromatic ring), δ 10.18(S,1H,O-H of indole ring), δ 10.23(S,1H,N-H of indole ring).

(2-(1-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2,5-dihydro-1H-tetrazol-5-yl)-4-methoxyphenyl)boronic acid (IIc):

(Dark brown)(70%);mp 270°C;IR(KBr) v (cm⁻¹):3336.96(OH stretching of indole ring);3379.4(N-H stretching of tetrazol and indole rings);1037.74(N-N stretching of tetrazol ring);1458.23(N=N stretching of tetrazol ring);3082.35(C-H stretching of aromatic);1361.79(B-O stretching of boronic acid);¹H-NMR(DMSO-d₆,500 MHz): δ 6.65(S,1H,N-H of tetrazol ring), δ 8.12(S,1H,C-H of tetrazol ring), δ 6.77-7.72(complex,6H,C-H of aromatic ring), δ 9.83(S,1H,O-H of indole ring), δ 9.92(S,1H,N-H of indole ring), δ 8.10(S,2H,O-H of boronic acid), δ 3.73(S,3H,CH₃ of OCH₃ group).

a:R1=H	R₂=H	R₃=N(CH3)2	R ₄ =H	R₅=H
b:R1=H	R ₂ =H	R₃=Cl	R4=H	R₅=H
c:R1=B(OH)2	R ₂ =H	R₃=H	R ₄ =O-CH ₃	R₅=H

Scheme (1): Synthesis of Tetrazole derivatives

Preliminary Antibacterial Studying of the synthesized compounds II(a-c):

The biological activities of synthesized compounds II(a-c) were accomplished in the Department of Clinical Laboratory Science, College of Pharmacy/mustansiriyah University by using well diffusion method. The compounds that we synthesized were investigated in vitro on nutrient agar medium on (Staphylococcus aureus and Streptococcus pyogenes) as gram positive bacteria and (Klebsiella and Escherichia coli) as gram negative bacteria.For antibacterial effect we used Trimethoprim as astandard drug.

Procedures of ADME:

We drew whole of ligands II (a-c) by using Chem draw Sketch (v. 19) ,then these ligands were transformed by software Swiss ADME tool to SMILE name to predict physical,chemical and pharmacokinetic properties. By using BOILED EGG we could determine lipophilicity and polarity of the small molecules.

Molecular docking studies:

The molecular docking was studied by using Glide[™], (version 5.7, Schrödinger, LLC, New York, NY,2011.The compounds which have most activity were docked on the active sites of Staphylococcus aureus, Streptococcus pyogenes, Klebsiella and Escherichia coli bacteria that emanate from crystal structure of the enzymes convoluted with anti-bacterial drugs, Trimethoprim in which PDB ID were 3G7E,4HL2,2W9S,2XCT and 4RKX.The molecules of water and the hetero atoms were removed from enzymes behind 5Å radius of reference ligand (Trimethoprim) aftert that the resulted structures of proteines were refined and minimized by Protein Preparation Wizard[™] using the OPLS-2005 force field.We used the program of Receptor Grid Generation to contrive the grid of Staphylococcus aureus, Streptococcus pyogenes, Klebsiella and Escherichia coli also the ligands were optimized by LigPrep[™] using the OPLS-2005 force field to produce the state with the lowest energy of the respective ligands. On bioactive compounds the stimulations of docking were achieved on compounds that were biologically active to produce 5 poses for each ligand and the pose that had the highest score was showed for each compound.

RESULTS AND DISCUSSION

Results of antibacterial studying:

For antibacterial studying of the synthesized compounds II (a-c) we used Trimethoprim as a reference drug and DMSO in pure state as a control. The antibacterial activities of these synthesized compounds were investigated on (Staphylococcus aureus and Streptococcus pyogenes) as gram positive bacteria and on (Klebsiella and Escherichia coli) as gram negative bacteria at four concentrations (62.5,125, 250 and 500 μ g/mL).The tested compounds inhibition zone for each concentration were listed in the table(1).As shown in this table, the strongest activity was against Streptococcus pyogenes bacteria and the weakest activity appeared against Escherichia coli bacteria with interesting activity on Staphylococcus aureus and Klebsiella bacteria. The resulting activities of the synthesized compound against bacteria are considered acceptable in comparison with Trimethoprim drug.

compound	Concentrat		Inhibition zone(mm)							
S	ion (µg/ml)	Gran	n positive		Gram negative					
		Staphylococc Streptococcus		Klebsiella	E.coli					
		us	Pyougenes	Pneumoniae						
		Aureus								
Trimethopr	5	25	25	20	13					

Table (1)	: Antibacterial	activity of	com	oounds II	la-c) a	and Tri	methoprim	against	tested	bacteria
TUNIC (Antibucteria	activity of	COM	sounds in			netnoprini	ugumst	<i>coca</i>	Saccenta

im					
DMSO	Pure	0	0	0	0
lla	500	10	12	10	12
	250	10	12	14	10
	125	8	15	12	10
	62.5	8	10	10	0
llb	500	15	20	14	0
	250	10	18	10	10
	125	0	14	10	0
	62.5	8	16	15	0
llc	500	12	18	15	8
	250	10	18	14	8
	125	8	16	12	8
	62.5	0	10	15	0

Interpretation of ADME results:

All the final compounds II(a-c) were calculated for their drug-like properties following the Lipinski's rule of five⁽³⁸⁾, which also called Pfizer's rule of five (RO5). This rule was used broadly as a crude filter for compounds that will be more used as a lead for programs of drug design. In general Lipinski's Rule of Five states determined that the drug to be orally active must has the following:

- *Hydrogen bond donors must be equal to or not more than 5 (NH and OH groups)
- * Hydrogen bond acceptors must be equal to or not more than 10 (notably N and O)
- * A molecular weight must be equal to or under 500 g/ mol
- * A partition coefficient (log P) must be equal to or less than 5

Also the topological polar surface area (TPSA) was calculated which is considered a very important property related to the molecules' bioavailability. The absorbed compounds with a TPSA value more than 140 A° are thought to have low bioavailability⁽³⁹⁾.In the table(2) which include the main data obtained from the ADME tool we noted that all the ligands of the final compounds II(a-c) were within the accepted values range. The compounds II (a-c) have TPSA values (79.25,76.01,125.70) respectively below 140 A° and bioavailability 0.55 which mean all of them can reach the systemic circulation, also they have no violation from the Lipinski's rule of five (RO5) and fulfilled the topological descriptors and fingerprints of molecular drug-likeness structure keys as Log P and Log S. GI absorption score can be defined as the volume of the extent of absorption of the compounds from the intestine after they taken

orally. When the results are high the absorption takes place. All the final products have high absorption according to the table (2) therefor they expecting to have a satisfying Intestinal absorption.

Compound	H-bond	H-	Molar	TPSA	GI	BBB	Bioavailabilit	Lipinski
s	accepto	bond	refractivit	(A°)	absorptio	permean	У	violatio
	r	dono	У		n	t		n
		r						
lla	4	3	116.52	79.25	High	NO	0.55	0
								violatio
								n
llb	4	3	107.32	76.01	High	Yes	0.55	0
								violatio
								n
llc	7	5	118.63	125.7	High	NO	0.55	0
				0				violatio
								n

Table (2): The resulted data from ADME tool for the final compounds

Interpretation of docking results:

On active site of each receptor of (Staphylococcus aureus and Streptococcus pyougenes) as gram positive bacteria and (Klebsiella and Escherichia coli) as gram negative bacteria the resulted compounds was docked. Their binding affinity and orientation with amino acid residues were explored in virtual screening. The results of virtual screening and scores of binding affinity of all compounds were within the range of (-7.274to-8.27) kcal/mol on Staphylococcus aureus,(-5.154 to -6.892) kcal/mol on Streptococcus pyougenes,(-4.845to-6.753)kcal/mol on Klebsiella and(-5.148to-7.054)kcal/mol on Escherichia coli.From the table(3) and table(4) which includes the docking scores ,orientations and interactions between synthesized compounds and amino acids residues of the four types of bacteria, the main interactions that seen in these tables are H-bond ,Pi-Pi stacking ,Pi-cation and hydrophobic interactions, these interactions support and gives the compounds good activity against bacteria. The highest binding affinities were (-8.27) kcal/mol on Staphylococcus aureus that was seen with compound (IIc),(-6.892) kcal/mol on Streptococcus pyougenes with compound(IIc),(-6.753) kcal/mol on Klebsiella and (-7.054) kcal/mol on Escherichia coli. These molecular docking results were in acceptable with the experimental results.

Table (3): The binding scores and main interactions between synthesized compounds and gram positive bacteria

Compou	Chemical structure	Docking	Type of interaction of	Docking	Type of interaction of
nds		score on	ligands of compounds	score on	ligands of compounds with
		Staphylococ	with Staphylococcus	Streptococ	Streptococcus pyougenes
		cus aureus	aureus	cus	

				pyougenes	
lla		-7.274	H-bond interaction	-5.154	H-bond interactions between
			between ASP27 and OH		ALA283,SER286,TYR389,SER3
	HN		group of indole ring and		91and
			H-bond interaction		OH group via water(H₂O)
			between PHE92 and NH		molecule as well as
			group of indole ring as		hydrophobic interactions
			well as hydrophobic		which include SER279,
			interactions which		SER280, GLY281
			include		SER282,GLY284,GLN304,GLY3
			ALA7,VAL6,ILE5,LEU28,		39,HIE340,ALA341,GLN332,G
			LYS29,ILE31,LYS32,ARG5		LY333,VAL334,CYS192 and
			7		VAL193
			LEU54,LEU20,TYR98,THR		
			46		
			TYR98 and ILE50		
llb		-7.265	H-bond interactions	-5.335	H-bond interactions between
			between LEU28ARG57		SER280,CYS192 and OH
			and OH group of indole		group of indole ring as well as
			ring Halogen bond		hydrophobic interactions
			between Cl and		which include
			water(H ₂ O) molecule as		VAL334,GLY333,GLN332,GLN
			well as hydrophobic		162,SER279,GLY281,SER282,
			interactions which		ALA283,GLY284,GLY339,HIE3
			include ASP27, ILE31		40,ALA341GLY191 and
			,LYS32,TYR98,PHE92,TH		VAL193
			R46,LEU20,ILE50,LYS52,		
			LEU54,PRO55,ILE5,VAL6		
			and ALA7		
llc	OH HO-B	-8.27	H-bond between SER49	-6.892	H-bond between TYR389 and
	HO N-CH-		and OH group of indole		OH group of indole ring via
	HN N OCH3		ring also H-bond		water(H_2O) molecule and H_2
			between ARG57 and		bond between SER282 and
			two OH groups of		one of OH groups of boronic
			boronic acid as well as		acid also H-bond between
			hydrophobic		GLY339 and the other OH
			interactions which		groups of boronic acid as well
			include		as hydrophobic interactions
			ILE50,THR46,PHE92,LEU		which include
			54,LYS32,ILE31,LEU28,HI		TYR330,GLN332,GLY333,VAL
			S23,LEU20 and GLN19		334,ALA283,GLY281,SER280,

		CYS192,VAL193,HIE340,ALA3
		41

Table (4	4): [·]	The	binding	scores	and	main	interactions	between	synthesized	compounds	and	gram
negative	e ba	cter	ia									

Compou	Chemical structure	Docking	Type of interaction of	Docking	Type of interaction of
nds		score on	ligands of compounds	score on	ligands of compounds with
		Klebsiella	with Klebsiella	Escherichia	Escherichia coli
				coli	
lla	HO N-CH-CH-CH3	-5.229	Pi-Pi stacking interaction	-5.336	H-bond interaction between
	HN N CH3		between HIE122 and		ASP73 and one of N=N group
			benzene ring also Pi-Pi		via water(H2O) molecule and
			stacking interaction		H-bond interactions between
			between HIS250 and		ARG76,PHE104 and OH group
			tetrazol ring and Pi-		of indole ring also Pi-cation
			cation interaction		interaction between ARG76
			between LYS211 and		and tetrazol ring as well as
			benzene ring as well as		hydrophobic interactions
			hydrophobic		which include
			interactions which		VAL120,VAL44,ASN46,ARG13
			include		6,VAL71,VAL111,ASP105,LYS
			VAL73,ILE35,SER251,LE		103,GLY102,ILE94VAL167 and
			U218		THR165
			SER217,LYS216,ALA215,		
			ASP212		
			CYS208,TRP93 and		
			HIS189		
llb		-4.845	Pi-Pi stacking interaction	-5.148	H-bond interaction between
			between TRP93 and		ASP73 and one of N=N group
			pyrrole ring as well as		via water(H2O) molecule as
			hydrophobic		well as hydrophobic
			interactions which		interactions which include
			include		LEU132,VAL120,VAL167,THR
			HIS250,CYS208,LYS211,		165,
			HIS189		ARG76,ILE94,ASP105,PHE104
			HIE122,LEU65,MET67,P		, LYS103,GLY102,HIS116 and

			HE70		ASN46
			VAL73 and ILE35		
llc	ОН НО-В	-6.753	Pi-Pi stacking interaction	-7.054	H-bond interaction between
	HOVEN		between TRP93 and		ASN46 and one of OH groups
	HN N N OCH3		benzene ring as well as		of boronic acid and H-bond
			hydrophobic		interaction between ASP73
			interactions which		and another OH group of
			include SER217,LYS211,		boronic acid via water (H ₂ O)
			CYS208,LYS125,HIE122,		molecule also H-bond
			HIS120,HIS250,ILE35,LE		interaction between PHE104
			U65		and NH group of pyrol ring
			MET67,VAL73,HIS189		and Pi-cation interaction
					between ARG76 and pyrol
					ring as well as hydrophobic
					interactions which include
					ILE94,ALA47,THR165,ARG136
					,ASP105,LYS103,GLY102,GLY1
					01,LEU52,HIS116 and VAL111

Figure (3): Compound IIc inside Staphylococcus aureus active site

Figure (4): Compound IIc inside StreptococcusPyougenes active sites

Figure (5): Compound IIc inside Klebsiella active sites

Figure (6): Compound IIc inside Escherichia coli active sites

REFERENCES:

- Frazer A, Hensler JG. Serotonin involvement in physiological function and behavior. In: Siegel GJ, Agranoff BW, Albers RW, et al., editors. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 6th edition. Philadelphia: Lippincott-Raven; 1999.
- Hong, C., Firestone, G. L., and Bjeldanes, L. F., Bcl-2 family mediated apoptotic effects of 3,3'diindolylmethane (DIM) in human breast cancer cells. Biochem. Pharmacol., 63,1085-1097 (2002)
- 3. Chang, X., Tou, J. C., Hong, C., Kim, H. A., Riby, J. E., Firestone, G. L., and Bjeldanes, L. F., 3,3'-Diindolylmethane inhibits angiogenesis and the growth of transplantable human breast carcinoma in a thymic mice. Carcinogenesis, 26, 771-778 (2005)
- Misra, U., Hitkari, A., Saxena, A. K., Gurtu, S., and Shanker, K., Biologically active indolylmethyl-1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 4H-1,3,4-triazoles and 1,2,4-triazines. Eur. J. Med. Chem., 31, 629-634 (1996).
- Samosorn, S., Bremner, J. B., Ball, A., and Lewis, K., Synthesis of functionalized 2-aryl-5-nitro-1Hindoles and their activity as bacterial NorA efflux pump inhibitors. Bioorg. Med. Chem., 14, 857-865 (2006).
- 6. Bal, T. R., Anand, B., Yogeeswari, P., and Sriram, D., Synthesis and evaluation of anti-HIV activity isatin β- thiosemicarbazone derivatives. Bioorg. Med. Chem. Lett., 15, 4451-4455 (2005).
- Pirrung, M. C., Pansare, S. V., Das Sarma, K., Keith, K. A., and Kern, E. R., Combinatorial optimization of isatin-β- thiosemicarbazones as anti-poxvirus agents. J. Med. Chem., 48, 3045-3050 (2005).
- 8. Sriram, D., Yogeeswari, P., and Gopal, G., Synthesis, anti- HIV and antitubercular activities of lamivudine prodrugs. Eur. J. Med. Chem., 40, 1373-1376 (2005)
- Zhang, H. Z., Kasibhatla, S., Kuemmerle, J., Kemnitzer, W., Ollis-Mason, K., Qiu, L., Crogan-Grundy, C., Tseng, B., Drewe, J., and Cai, S. X., Discovery and structure-activity relationship of 3aryl-5-aryl-1,2,4-oxadiazoles as a new series of apoptosis inducers and potential anticancer agents. J. Med. Chem., 48, 5215-5223 (2005)
- 10. Brown, A.R. Katritzky, C.W. Rees, in: A.R. Katrizky (Ed.), Comprehensive Heterocyclic Chemistry, vol. 2, 1984, pp. 150e189.
- 11. H.B. Jonassen, et al., Platinum-and palladium-tetrazole complexes, Inorg.Chem. 9 (1970) 2678e2681.
- 12. Z.P. Demko, K.B. Sharpless, Preparation of 5-substituted 1 H-tetrazoles from nitriles in water, J. Org. Chem. 66 (2001) 7945e7950.
- 13. S. Berghmans, et al., Zebrafish offer the potential for a primary screen to identify a wide variety of potential anticonvulsants, Epilepsy Res. 75 (2007)18-28.
- 14. J.H. Toney, et al., Antibiotic sensitization using biphenyl tetrazoles as potentinhibitors of Bacteroides fragilis metallo-b-lactamase, Chem. Biol. 5 (1998)185-196.
- 15. C.X. Wei, M. Bian, G.H. Gong, Tetrazolium compounds: synthesis and applications in medicine, Molecules 20 (2015) 5528-5553.
- 16. M. Alam, et al., Computational and anti-tumor studies of 7a-Aza-B-homostigmast-5-eno [7a, 7-d] tetrazole-3b-yl chloride, J. Mol. Struct. 1108 (2016)

- 17. Y. Tamura, et al., Highly selective and orally active inhibitors of type IV collagenase (MMP-9 and MMP-2): N-sulfonylamino acid derivatives, J. Med.
- 18. V.A. Ostrovskii, et al., Energetic 1, 2, 4-triazoles and tetrazoles: synthesis, structure and properties, ChemInform 31 (2000) 50.
- 19. M. Hiskey, et al., Progress in high-nitrogen chemistry in explosives, propellants and pyrotechnics, in: Proc Int Pyrotech Semin, 2000.
- 20. Herr, R. J., 5-Substituted-1H-tetrazoles as carboxylic acid isosteres: medicinal chemistry and synthetic methods. Bioorg. Med. Chem., 10, 3379-3393 (2002).
- 21. Master, H. E., Khan, S. I., and Poojari, K. A., Design and synthesis of low molecular weight compounds with complement inhibition activity. Bioorg. Med. Chem., 13, 4891-4899 (2005).
- Rajasekaran, A. and Thampi, P. P., Synthesis and antinociceptive activity of some substituted-{5-[2-(1,2,3,4-tetrahydrocarbazol- 9-yl)ethyl]tetrazol-1-yl}alkanones. Eur. J. Med. Chem., 40, 1359-1364 (2005).
- 23. Baker, S.J.; Ding, C.Z.; Zhang, Y.K.; Hernandez, V.; Xia, Y. Therapeutic potential of boroncontaining

compounds. Future Med. Chem. 2009, 1, 1275–1288.

- 24. Yang, W.; Gao, X.; Wang, B. Boronic Acid Compounds as Potential Pharmaceutical Agents. Med. Res. Rev 2003, 23, 346–368.
- Hall, D.G. (Ed.) Structure, Properties, and Preparation of Boronic Acid Derivatives. Overview of Their Reactions and Applications. In Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine; Wiley-VCH: Weinheim, Germany, 2005; pp. 1–99.
- Ebdrup, S.; Jacobsen, P.; Farrington, A.D.; Vedsø, P. Structure–activity Relationship for Aryl and Heteroar Boronic Acid Inhibitors of Hormone-Sensitive Lipase. Bioorganic Med. Chem. 2005, 13, 2305–2312.
- Bull SD, Davidson MG, Van den Elsen JMH, Fossey JS, Jenkins ATA, Jiang YB,Kubo Y, Marken F, Sakurai K, Zhao J, James TD: Exploiting the reversible covalent bonding of boronic acids: recognition, sensing, and assembly.Acc Chem Res 2013, 46(2):312–326.
- 28. Wu X, Li Z, Chen XX, Fossey JS, James TD, Jiang YB: Selective sensing ofsaccharides using simple boronic acids and their aggregates. Chem SocRev 2013, 42(20):8032–8048.
- 29. Lu CC, Li HY, Wang HY, Liu Z: Probing the interactions between boronic acids and cis-diolcontaining biomolecules by affinity capillary electrophoresis. Anal Chem 2013, 85(4):2361–2369.
- 30. Fernandes, G.F.S.; Denny, W.A.; Dos Santos, J.L. Boron in drug design: Recent advances in the development of new therapeutic agents. Eur. J. Med. Chem. 2019, 179, 791–804.
- 31. Kiener, P.A.; Waley, S.G. Reversible inhibitors of penicillinases. Biochem. J. 1978, 169, 197–204.
- 32. Trippier, P.C.; McGuigan, C. Boronic Acids in Medicinal Chemistry: Anticancer, Antibacterial and Antiviral Applications. Medchemcomm 2010, 1, 183–198.
- 33. Chen, Y. Z. and Zhi, D. G. (2001) Ligand-protein inverse docking and its potential use in the computer search of protein targets of asmall molecule. Proteins, 43, 217–226.
- 34. Lamb ML, Jorgensen WL (1997) Computational approaches to molecularrecognition. Curr Opin Chem Biol 1: 449-457.

- 35. Gschwend DA, Good AC, Kuntz ID (1996) Molecular docking towards drugdiscovery. J Mol Recognit 9: 175-186.
- 36. Shoichet BK, McGovern SL, Wei B, Irwin JJ (2002) Lead discovery usingmolecular docking. Curr Opin Chem Biol 6: 439-446.
- 37. Ferreira LG, dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structurebased drug design strategies. Molecules 20: 13384-13421.
- 38. A Lipinski, F Lombardo and B.W. Dominy, Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev., 2001, 46, 3.
- 39. Palm K, Stenberg P, Luthman K, Artursson P. Polar molecular surface properties predict the intestinal absorption of drugs in humans. Pharmaceutical research. 1997 May 1;14(5):568-71.