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Abstract 

In the next generation wireless technologies like 5G/6G and beyond, there is a scope for intelligent and smart way 

of information transfer and services to the society, which is scalable.  With such potential communication capacity, 

many smart activities are initiated to tackle more intrinsic and extrinsic services in the areas like smart city, 

agriculture, health, industry, automation etc. In all of these areas to become a smart environment, there is a 

requirement of embedded sensors, Internet of Things (IoT), edge computing, smart sensors to sense and tag the 

phenomenon of interest with digital decision support systems.  Here, the work proposes a novel technique to 

identify the dynamics of the phenomenon using the gradient of different parameters.  Spike based hebbian learning 

model is introduced with mathematical analysis to hand hold the dynamics of the phenomenon using the adaptable 

patterns for energy efficient  sensor usage. Implementation results are compared with the analytics in a given 

simulation environment. System is trained and tested for stochastic gradient analysis to model the error. 
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I. Introduction  

Smart embedded sensors play a vital role in sensing, processing and communication of information 

from source to destination. In 5G and 6G generation wireless technologies there will be a lot of 

scope for optimal deployment of sensors in every sector. Machine learning algorithms are able to 

predict the proper deployment of sensors based on the observed historical data.  

Normally sensors become a smart computing devices that capture the physical phenomenon 

of interest and communicate to the end devices effectively through the wireless network. Smart 

sensors are deployed in every sector namely health care, agriculture, weather monitoring, industrial 
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sector etc. Due to the increase in the large number of such smart devices in future 5G and 6G 

technologies, there will be constraints on the energy usage pattern of the wireless sensor network. 

To achieve the energy reduction in the network different machine learning algorithms have been 

introduced by many researchers. In the proposed work  hebbian learning technique is adopted to 

map the sensor network with each single neuron being modeled as a sensor node to learn the 

behavior of the environment [4]. Later to compute the optimal number of sensor’s deployment 

based on spatio-temporal distribution of parameter values to conserve the energy and cost of sensor 

deployment. Simulation of the proposed methodology is carried out to evaluate the performance. 

Here each sensor node data from the environment is modeled as a Gaussian distributed data and 

verified analytically.  

Here the work is discussed in four major sections. section II discusses briefly on some of 

the related works in the area. Basic concepts of the sensor's energy model for the existing system 

are explained in section III, that involves neural networks, Hebbian learning and spike 

modelling.  Proposed methodology and algorithm’s design for the process involved with the use of 

hebbian spike model is described in section IV.  Implementation and results with performance 

analysis for comparisons are narrated in section V. Conclusion remarks are given in section VI.    

II. Related work 

Mathematical formulations of hebbian learning based on activation potentiation of each neuron and 

the weight update  with respect to synchronous firing of presynaptic and postsynaptic neuron to 

find the correlation among the neurons is discussed in  [1]. Mathematical analysis on the structure 

and dynamics of hebbian learning for discrete time random recurrent neural networks is considered 

in [2]. Here a generic hebbian learning rule in. Support vector based machine learning to identify 

scales for neuronal activity and learning dynamics are  node level energy saving based on Simulated 

Annealing  [3] are some of the  efficient  techniques to reduce the energy consumption. Deployment 

of sensors in smart cities [5] with Triangulation-based Deployment for Smart Cities (EDTD-SC), 

which targets not only sensor distribution, but also sink placement  is also one of the method to 

reduce energy consumption.   In [6] automatic configuration of energy harvesting in sensor nodes 

with reduced node duty cycle by performing reinforcement learning, i.e., to maximize sensing 

quality of energy harvesting sensors for periodic and event driven sensing scenarios with available 

energy.   In [7] a deterministic sensor deployment for target coverage is proposed to predict gas 

leakage using particle swarm optimization algorithm.to achieve the energy reduction in the network 

different machine learning algorithms have been introduced by many researchers. A support vector 

based machine learning classification method is used to detect the fault and anomalous sensors in 

wireless sensor networks [12]. Deterministic deployment of gas sensors using particle swarm 

optimization algorithm is proposed to monitor the coverage and its efficiency in [13]. A virtual force 

algorithm as a sensor deployment strategy and probabilistic target localization algorithm is proposed 

to improve the sensor’s usage and coverage [14].  

From the related works and recent research in the areas, we have proposed a novel method 

to deploy the sensors based on environmental dynamics and its gradient using hebbian learning 

technique in the present work.     

 

III Neural networks and Hebbian learning 

A neural network is a collection of neurons and interconnected synapsis.  An artificial neural network 

composed of artificial neurons are again connected to each other with synaptic weights. Thus a 
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neural network is either a biological neural network, made up of biological neurons to solve natural 

intelligence problems, whereas an artificial neural network is for solving artificial intelligence 

problems. They interpret sensory data through a kind of machine perception, labeling or clustering 

raw input. The patterns they recognize are numerical, contained in vectors, into which all real-world 

data, like an image, sound, text or time series, must be translated. Typically an artificial neural 

network model consists of input layer, hidden layer and output layer, with synaptic weights. By 

showing the input patterns based on the computation done in each layer, the output is generated. 

Different learning algorithms are implemented to learn the system. Each neuron has its own 

potentiation for activation and are interconnected to make a artificial neural network. Such a system 

has been made to learn by applying supervised and/or unsupervised learning methods. Hebbian 

learning is one of the learning algorithm to learn the input patterns and take decision based on 

learning, where the synaptic weights gets updated based on the neuronal presynaptic and 

postsynaptic activation. 

 

III.1 Spike modeling of Hebbian learning 

From Hebb’s postulate for hebbian neural network learning, the weight should increase if, during an 

experimental trial, both neurons are active together.  Hebbian learning as a function of the activity 

of the pre and the postsynaptic neuron. Figure 1 shows a typical scenario of four neuron distributions 

and their synaptic weight values amongst them.   

 

Figure 1: Typical Hebbian learning scenario with neighboring neurons 

Considering the weight update using hebbian learning rule, for a given time step t, is shown in 

equation 1.  

wij [t+1] = wij[t] + α xi[t] . xj[t]  ………… (1) 

 

where xi[t] and xj[t] adopt the state of  the adjacent neuron, distributed in a given sensing 

environment with sensor value having Gaussian distribution. α is the learning rate € (0, 1). Applying 

hebbian learning and performing statistical analysis to compute the correlation coefficient among 
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adjacent sensor nodes leads to the update of synaptic weight.  Based on the synaptic weight matrix, 

redundancy among the sensor and identifies the correlation among the corresponding sensors. Here 

the spike means the time dependent plasticity, i.e., the learning rule for the synapse connecting 

neuron j to neuron i should depend only on the activity of j and i and not on the state of other 

neurons.  

Mathematically rate of change of weight update can be written as   

 d/dt f (w, xi, xj)    ………..  (2) 

 

where xi is the presynaptic signal and xj is the post synaptic signal and wij is the connection link 

between xi and xj.   Time-dependent stimulation will be modeled in the context of the spike-based 

formulation. Consider the weight change dwij during one learning trial. Since the total weight 

change during a trial depends on the duration of the trial and is shown as rate of change of weight 

in equation (3)  

dwij / dt =  ᐁwij/T   ……….  (3) 

Mathematical formulations of hebbian learning based on activation potentiation of each neuron and 

the weight updates are discussed.  Update with respect to synchronous firing of presynaptic and 

postsynaptic neuron to find the correlation among the neurons [1]. Mathematical analysis on the 

structure and dynamics of hebbian learning for discrete time random recurrent neural networks is 

considered in [2]. 

III.2 Wireless sensor networks and network energy model  

Sensor node energy consumption includes sensing, processing and radio energy model described in 

this section, to understand the energy dissipation for sensing, transmitting and receiving in sensor 

node and in the WSN [11].  

A Sensor Node Energy Model: Energy used by different components to perform the basic functions 

as a sensor node is explained [10].  

Sensor sensing:  Energy spent on sampling the physical parameter signal  in to electrical signal and 

later analog to digital conversion, as  Psens.  

Microcontroller Processing: Energy spent for processing and memorizing  includes  energy for 

electronics, Pelec  and energy loss due to leakage current,  Pcurrent 

i.e., Pmicro = Pelec 
+   Pcurrent 

Radio Transmission: Energy spent for  b bit transmit, in a distance  dij  i.e., distance between 

sensor node i and node j.      

 i.e., Ptx(b, dij)=b * Ptrans + b * dij
n

  * PP_amp  
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Where, Ptrans is the energy dissipated to transmit electronics, PP_amp is the energy dissipated by 

the power amplifier, ’n’  is the distance based path loss exponent (Here  n = 2 for free space, and 

n = 4 for air space).  

Radio Reception: Energy spent in receiving b bit packet from the sensor node is given 

by       Prx(b) = b * Precv  

Where,   Prx is the total energy dissipation in receive electronics, where, Precv  is the energy 

dissipated in receive electronics. b is the number of bits in the packet. 

Sensor node energy: The power consumption in the sensor node is given by  

Psn (b)=Prx(b) +Ptx(b, dij )+Pmicro+Psens(b),  where P(b) is the b bit sensing energy of a node.  

Network Energy model: Network energy consumption of embedded WSN is given below.   Ns are 

the number of sensor nodes placed in a given region  

Pclu =  nc * Psn (b) +Ptxsink (b),    Ptxsink  is the energy consumption in the cluster head to send 

the aggregated data to sink.  

Pnet= k *Pclu        Where, k is Number of clusters in a sensor network, nc is number of nodes in a 

cluster and Pnet  is Energy consumed in the network. 

Above model is considered in the simulation to create a realistic environment for performance 

evaluation.  

IV Proposed model  

The principle of spike based hebbian learning is considered with the principles discussed in section 

III. Further to the continuation of the previous work in [4], a mathematical analysis of the spike 

based hebbian learning approach has been proposed in this work. From our previous work done to 

achieve optimal energy and sensor nodes in a given scenario. Hebbian learning with sensor network 

layered architecture is used [4], to identify the correlation amongst the neuro-sensory node based 

on the presynaptic and postsynaptic firing of neuron working simultaneously. By considering 

hebbian learning weight calculation, here it is assumed that a wireless sensor network is deployed 

in an environment where a large number of nodes are distributed randomly to carry out sensing 

and gathering of data from the environment. When two sensors collect the same data from the 

environment, mapping to hebbian neurons and their activation, the data is correlated and the weight 

is increased. If they are collecting distinct data from the environment, the weights are decreased.  

Here the hebbian learning is followed based on the data gathered by sensor nodes. When 

each presynaptic and postsynaptic value of the sensory neuron correlates with some threshold 

value, a tuning parameter, i.e, they synchronize or spike together, accordingly the synaptic weight 

gets updated. After the hebbian learning phase, based on the weight values, strong or weak 

connections is used for deciding and fixing the number of sensor nodes, i.e, to identify the redundant 

nodes that mimic the neuron’s and their connection patterns distributed across the phenomenon. 
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After identifying the sensor nodes and their data correlation using hebbian learning, the regression 

learning is used to train a decision model based on neuro-sensory patterns generated as a training 

data set. Both stochastic and batch gradient descent algorithms are used to reduce the mean square 

errors as a performance measure for effective deployment of sensors.  

By considering the similar sensing values (Statistical average of Gaussian distributed sensed 

data) of each sensor node at each and every instant with a certain threshold, the correlation is 

computed with statistical analysis over the sensed data. Based on the similarity of the correlation 

coefficient amongst multiple sensor nodes, the decision is taken to update the pattern of similarity 

and the number of sensor nodes to be deployed. The correlation coefficient (similarity index) at a 

given instant of sampling time and their respective pattern leading to number sensor nodes, are the 

training sample. Similarly for multiple sampling time to generate sufficient training data set to learn 

the pattern and their behavior. Here Learning algorithms are used to classify the given correlation 

coefficient values and output to identify the number of sensor nodes at a given instant of time to 

be enabled/disabled, or deploy/not in a long run.   Here the training data set taken over for the 

values, that leads to the  number of sensor nodes to be used, or enabled in a given sensing area.  

Assumption is that each sensor node receives Gaussian distributed data. Here the sampling 

is done at regular intervals, which can be varied depending on the phenomenon or application 

type.  This proposed model also considers a gradient descent algorithm to identify the number of 

sensor nodes to be deployed based on the correlation between the sensor node values from a given 

area. Training examples taken for each of the neighboring sensor nodes and their correlation. Based 

on the correlation coefficient value, the number of sensor nodes to be considered are taken as the 

expected number of sensor nodes. Using such labeled training data sets, stochastic gradient and 

mini batch gradient descent optimization algorithms for machine learning and deep learning can be 

performed to predict the number of sensor nodes to be deployed, and can be  distributed across 

phenomena.   

The performance of the gradient descent machine learning is evaluated and compared the 

overall performance of the optimal sensor deployment along with energy efficiency with and without 

spike modeling of hebbian learning. Batch gradient descent and stochastic gradient descent are two 

methods that have been implemented and tested for the performance of the model. Simulation has 

been carried out for different scenarios to evaluate the performance of the proposed model and is 

described in section V.  
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V Simulation and Results     

V.1 Scenario for Hebbian learning and with Gradient descent  

In a given sensor network deployment scenario, assuming a triangular distribution of sensor node, 

shown in figure 2 (here we can assume grid distribution or any 3 dimensional sensor 

distribution)  with each sensor output values of the measured parameters having a Gaussian normal 

distribution. Here at each instant for one trial of experiment T, Compute the weight update of each 

sensor node depending on Gaussian input data spike together so that weight gets updated, but in 

the spatio-temporal domain correlation coefficient gets updated. Based on the weight update in 

each dual spiking, identify the enabling of sensor nodes and compute the energy, the residual and 

the total energy conserved. Performance measure is done with mean square error. 

 

 

Figure 2: Three Sensor node’s measured value with Gaussian distributed data values at 

time t1 and t2 

 

Gaussian distribution: Most commonly used distribution over real numbers is normal distribution 

also known as the Gaussian distribution, defined by the equation 6.  

 

Ɲ(x; 𝜇, σ2) =  √𝟏/𝟐𝝅 𝛔𝟐   exp  (-  
𝟏

   𝟐𝛔𝟐 (x-𝜇)2 )        .............. (6) 

 

The two parameters 𝜇 ∈  𝑅  and σ  ∈ ( 0, ∞) are control the normal distribution, that 𝜇 defines 
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the coordinate of the  center peak and mean of the distribution, and standard deviation is the given 

by σ  and the variance is given by σ2 .  

 

In the region of interest the number of sensor nodes deployed are s1, s2, s3  upto si. Consider the 

distribution of sensor nodes in triangular form, with  s1, s2, s3 as vertices of a triangle shown in 

figure 2. Similarly the modelling or actual distribution can be considered for grid topology, hexagonal 

or any polygon with three dimensional field deployed sensor patterns. Here with three sensor nodes 

s1, s2, s3, it is assumed that the sensor node values are Gaussian distributed as shown in figure 2 

again.  Statistical correlation among sensor data with each time instant t1, also named as sensor 

data correlation (SDC), i.e., measured as an average value at the end of a certain time span fixed 

for the given application. (here the time span can be any duration like 1 minute, or 30 minutes or 

1 hour, etc which is application dependent). Here the measured values are taken as the correlation 

values taken randomly at different time instant for the simulation (in figure 2, it shows two instant 

of time t1 and t2), and accordingly the updation of hebbian weights (with some random values for 

t1 and t2) that follows the equation 1 or 8.   

The table content shows for the time duration T, observed for 5 samples in 5 time  instances, and 

assumed a threshold value of 0.7 (can be varied) to correlate the average values of sensor data as 

correlation value. Similarly, the hebbian weight updates are shown with some random initial values 

and the updates are made based on hebb’s rule. Here the computation is to optimize the number 

of similar sensor data with gradient of their values for the Gaussian distribution of the sensed data 

taken over a time period T. Here the measurements are correlated with the sensor nodes having 

some threshold value with spatial distribution.  

 

Table I: Training data set based on correlation coefficient and weight update status 

Measure

d 

average 

values 

at time 

correlatio

n 

coefficient 

between  

s1 and s2 

r1 

correlatio

n 

coefficient 

between  

s1 and s3 

r2 

correlation 

coefficient 

between  

s2 and s3 

r3 

weight 

update 

(synaptic 

link)betwe

en s1 and 

s2 

w12  

weight 

update 

between s1 

and s3 

w13 

Weight 

update  

between s2 

and s3 

w23 

 at t1 0.9 0.4 0.1 0.849 0.379 0.272 

 at t2 0.9 0.4 0.7 0.955 0.256 0.467 

at t3 0.9 0.3 0.4 0.343 0.247 0.871 

at t4 0.8 0.4 0.6 0.124 0.673 0.387 

at t5 0.7 0.8 0.7 0.825 0.756 0.988 
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Table II: Training data set based on correlation coefficient and number of sensor nodes  

Measured 

average values at 

time 

correlation 

coefficient 

between  

s1 and s2 

r1 

correlation 

coefficient 

between  

s1 and s3 

r2 

correlation 

coefficient 

between  

s2 and s3 

r3 

Number of sensor 

nodes  

OUTPUT  Y 

 at t1 0.5 0.4 0.1 3 (all with  less  ri ) 

 at t2 0.9 0.4 0.7 2  r1 is hgh  

at t3 0.1 0.3 0.4 3 (all with  less ri ) 

at t4 0.8 0.4 0.6 2   (r1  ≅  r3 and 

high ) 

at t5 0.7 0.8 0.7 1 (all ri’s are high) 

 

Adapting Karl pearson's methods product moment for finding the correlation [9], the values found 

are shown in table II as r1, r2, and r3.   

r1= cov(s1, s2) / (σs1 * σs2)   r2= cov(s2, s2) / (σs1 * σs2)   r1= cov(s1, s2) / (σs1 * 

σs2) ……  (7)    

𝜎𝑠𝑖  - deviation for gaussian distributed data for Si 
th sensor.  

cov (s1, s2) -  the covariance between s1 and s2.  

Based on the correlation the Hebbian learning will update the corresponding weights according to 

Hebb’s rule [4] shown in the equation (8).   

w12(new)=w12(old) +α s1.s2;  w13(new)=w12(old) + α s1 . s3; w23(new)=w23(old) + 

α  s2 . s3;  ……..  (8) 

Based on the above weight values, the number of sensor nodes are defined as the output based on 

the redundancy and correlation between the sensor data.  

The stochastic gradient descent and its variants are the most optimization algorithms which are 

used to obtain an unbiased estimate of the gradient by taking the average gradient on a mini-batch 

of n examples with i.i.d from the data generating distribution. The same distribution is shown in 

table II. 

This minimizes the generalization error. Generally, the cost function for the stochastic gradient 

descent can be written as an average over the training set. 

Cost function J(W)=  𝔼(r, y ) є Hebbian data set  and Error function E = ( f (s,w), y )    …………   (9) 

The above equation defines an objective function with respect to the training set to minimize the 

objective function the expectation is taken across the data-generating distribution of   data. E is the 

per example error function f (s,w) is the predicted output when input is s, and  data is the 

empirical  distribution taken from the Hebbian learning patterns, y is the target output in the 

supervised learning. 
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V.2 PSEUDO CODE 

Stochastic Gradient Descent (SGD) algorithm  

Begin  

{ 

 initialize  learning rate alpha 

initialize the parameter w 

while stopping criterion not met do 

Sample an examples from the training set { r1,  .... ri } with  

corresponding targets yi (table II) 

compute gradient estimate  

} end while 

 

V.3 Results and Discussions  

Figure 3 shows convergence of the learning algorithm for about 500 epochs. Cost function decays 

as number epochs increase. Figure 4 below shows stochastic gradient descent the convergence of 

error for Gaussian data distribution of sensor data. Here the cost function converges after 10000 

learning epochs. To adjust the weights, batch gradient will use all training samples whereas 

stochastic gradient will use randomly selected training samples.  

Figure 3: Normalized Error cost for batch training with respect to epochs. 

 

Figure 4: Normalized Error cost for stochastic gradient training with respect to epochs 
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Energy efficiency of the network with hebbian and without the hebbian is considered by considering 

the normalized values with respect to total lifetime of the WSN with maximum epochs as 100% life 

time and total energy in the network is the summation of residual energy in each sensor nodes.  This 

graph in figure 5 depicts that the total residual energy depletes slowly with the hebbian model since 

the distribution of the energy and sensor usage is considered based on the gradient of environmental 

parameters to be measured. Also the stochastic gradient model increased the accuracy of the 

system.  

Figure 5: Energy conservation is WSN with and without Hebbian learning 

 

VI. Conclusion  

Sensor deployment investigation study is made to understand the challenges and functional 

requirements in the areas of WSN. Analytical modeling relating to the hebbian learning and its 

mapping to the sensor nodes are proposed to update the relationships between the sensor nodes 

based on the sensed values and their gradient to fix the number of sensors to be deployed in a 

given area to conserve energy and cost effectiveness. Analytical and mathematical models are 

considered to justify the deployment strategy using hebbian learning rules. Simulation experiments 

are carried out to evaluate the performance of the system with respect to energy saving and cost 

effective deployment of sensors. Overall performance is studied to improve the life time of the 

sensor networks and effective deployment of wireless sensor networks.  
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