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Abstract  

L-Asparaginase aminohydrolase (EC 3.5.1) or L-asparaginase (L-ASP) is an enzyme capable of hydrolyzing L-

Asn into aspartic acid and ammonia, which is used as a treatment for acute lymphoid leukemia. Cloning of L-

asparaginase gene from A-novel Pseudopedobacter sltans DM12145 in E. coli. with accession number 

NC_015177.1.  full-length of P. saltans L- asparaginase is 1019pb, protein encoding 339 amino acids; and 

molecular weight evaluated to be 37.8kDa, with theoretical (pI) is 6.13 kDa. It was cloned on the expression 

vector pET-28α-His (+) by EZ Clone method synonymously called ligation independent cloning (LIC) with 

protein ID   WP_013634621.1".  by Genscript Co., USA. Respectively. The recombinant of L-asparaginase I 

gene of P. saltans was expressed in pET28-αHis and transformed in E. coli BL21 (DE3); as a (6 his-tag fusion 

protein).and induced by one mM of (IPTG) for 18 hours at 30˚C, and purify by IMAC Chromatography, then 

analyzed by SDS-PAGE to assess the solubility and molecular weight of recombinant protein band was exactly 

as expected at 36.0 kDa. P. saltans L-asparaginase I enzyme maintained its enzymatic activity at a pH8.5, 

temperature 60˚C, with variable of kinetics Km value equal to 3 mM and a Vmax of 168.2 µmol/min/mg, 

finding of this study revel It is quite similar to L-asparaginases I of E. coli which is distinctly specific for L-

Asparagine and act as homodimer cytosolic protein. Finally, the cloning and expression of A Novel-bacterial 

of P. saltans L-asparaginase enzyme in soluble and active stats, was successfully achieved.  

 

Keywords: Pseudopedobacter saltans, L-asparaginase, IPTG I sopropyl β-D-1- thiogalactopyranoside, 

homodimer, Cloning, expression 

 

Introduction  

L-asparaginase (L-ASP), or l-Asparagine aminohydrolase (EC 3.5.1), is an enzyme capable of hydrolyzing L-Asn 

into aspartic acid and ammonia (Kumar, 2012), It is used in the treatment of Acute Lymphoid Leukemia, which 
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promotes the cleavage of the amino acid asparagine through the use of water and cleaves non-peptide 

carbon-nitrogen bonds (Erva, 2016). Two types of L-ASPs are observed: type I found in the cytosol and type 

II in the bacterial periplasm. L-asparaginase from gram-negative bacteria (EcA) is widely used in the treatment 

of ALL but its administration requires a crucial control for the maintenance of the patient's well-being. L-

asparaginase from E. coli is thought to be the most potent tumor-killing enzyme in the world. Broome (1968) 

postulated that this high tumor inhibition capacity was due to the main factors, including high affinity of the 

enzyme for L- asparagine, translated into a low Michaelis-Menten (KM) constant considering that its 

glutaminase activity is identified as the responsible for the side effects. 

These include allergic reactions (difficulty breathing, rash, fever, pain, redness, swelling in the injection area), 

symptoms of liver problems (darkness of urine, nausea, loss of appetite, pancreatitis) and neurological 

seizure (Erva, 2016). It was postulated that a low cross-glutaminolytic activity is important to avoid excessive 

side effects of the enzyme treatment. Therefore, several researches have been developed aiming the 

isolation of microbial strains that produce this important enzyme, such as Pseudomonas fluorescens, Serratia 

marcescens, Escherichia coli, Erwinia carotovora, Proteus vulgaris, Saccharomyces cerevisiae, Karnatakensis 

Streptomyces, Streptomyces venezuelae and several genera of fungi such as Aspergillus, Penicillium and 

Fusarium (Gallagher, 2010).Pseudomonas fluorescens, Mycobacterium phlei, Staphylococcus bacteria, 

Tetrahymena pyriformis and Thermus aquaticus, a thermophilic bacterium, were identified as producers 

(Verma et al., 2007). So, in this present study we will be describing the cloning, expression, purification of 

recombinant l-asparaginase from a novel bacterium Pseudopedobacter saltans into E. coli BL21 DE3. 

Materials and Methods  

Vectors and Bacterial strains  

The pET-28a (+) vector was used as an expression vector, E. coli (BL21) Rosetta strain from (Promega, USA) 

that was used for expression hosts for recombinant proteins. (Laura Bertani media, Difco Laboratories/India), 

(Modified ezapelc's dox broth, interon/Korea), (Wizard genomic DNA purification, Promega/USA), (Wizard 

genomic DNA purification, Thermo Fisher/USA), (PCR master mix, Healthcare/USA), PMSF; Triton 

X100(Amresco/USA).  

Cloning of asparaginase I encoding gene from Pseudopedobacter saltans 

The open reading frame (ORF) encoding the asparaginase type I gene from the novel bacteria 

Pseudopedobacter sltans DM12145, and all its genetic information that related to determination its 

possession of the l-asparaginase gene was obtained from the NCBI website (http://www.ncbi.nlm.nih.gov). 

The L-asparaginase gene type I of Pseudopedobacter sltans DSM 12145 with the accession number 

NC_015177.1. associated with protein ID WP_013634621.1".  It was cloned on the expression vector pET-28a 

(+) by EZ Clone method synonymously called ligation independent cloning (LIC) by Genscript Co., USA.   

transformation and Heterologous expression of pET-28α-His (+)/asp_pseudopedo construct in bacterial 

system 

The E. coli BL21(DE3) chemo-competent strain was transformed with the vectors pET-28a (+) and incubated 

on LB agar plates with kanamycin (34 µg/mL), at 37 °C for Overnight under 200 rpm agitation Expression 

induction was performed using 1 mM of (IPTG), incubating the culture medium at 30°C for 18 hours, under 

200 rpm rotation. 

Screening of the transformants E. coli BL21 (DE3) Rosetta cells harboring pET-28α-His (+)/asp_pseudopedo 

construct 
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The pET-28a (+)/asp_pseudopedo construct, assuming to carry the asparaginase type I gene, was isolated 

from five single colony and subjected to restriction digestion with both restriction enzyme XhoI and MluI, 

figure (1). then, subjected to PCR reaction using the universal primer set of the pET-28a (+) vector T7 

promoter/T7 terminator. The sequence of the universal primer set T7 promoter/T7 terminator was as follow: 

T7 promoter (5’-TAATACGACTCACTATAG-3’) and T7 terminator (5’- TAGTTATTGCTCAGCGGTGG -3’). The run 

PCR condition (Initial denaturation (1 cycle): 95℃, 5 min; Amplification (16 cycles): Each segment has: 

Denaturation: 98℃, 20s; Annealing: 69℃, 30s; Extension: 72℃, 30 s; Then amplification for 6 cycles Each 

segment has: Denaturation: 94℃, 20s; Annealing: 58℃, 30s; Extension: 72℃, 30 s; Final extension (1 cycle): 

72oC, 10 min. finally the PCR products was subjected to Electrophoresis and SDS-PAGE. 

In silico sequence and Phylogenetic analysis 

The sequence of P. saltans L- asparaginase amino acid, was obtained by translating the nucleotide sequence 

using the translation tool at the ExPASy server (http://web.expasy.org/translate/). The prediction of 

secondary structure was performed according to the SAS online program (sequence annotated by structure) 

(https://www.ebi.ac.uk/thornton-srv/databases/sas/). Then, the dimensional structure expectation was 

done by submitting the sequence of the protein to the Swiss model server to obtain the data and the Three-

dimensional structural prediction, were analyzed.  

Results and Discussion  

Pattern of PCR amplification of the insert using pET-28a (+)/asp_pseudopedo construct as a template and 

T7 promoter and T7 terminator primer set 

To detect the transformation of the pET-28a (+)/asp_pseudopedo construct, by using the universal primer 

vector set T7 promoter and T7 terminator (Figure2). The amplified genomic the expected size of the PCR 

product is 1500 bp including the L-asparaginase type I gene (1019 bp) from P. saltans, and the remaining 

extra nucleotide were from the vector itself, after genomic sequencing, the correct nucleotide sequence was 

confirmed. 

SDS-PAGE analysis of Heterologous expression in prokaryotic system and purification of pET-28a 

(+)/asp_pseudopedo 

After the cell lysis the protein extract (soluble fraction) of the recombinant protein were purify with IMAC 

Chromatography, then was analyzed by SDS-PAGE to assess the solubility of the protein as well as to 

determine (M.W) of recombinant protein band was exactly as expected at 36.0 kDa. as show in figure 3. the 

result indicates that the P. saltans L-asparaginase is quite similar to type I- asparaginase. which is distinctly 

specific for L-asparagine located into cytosol and act in solution as homodimer. This homodimer is quite 

necessary for acting site formulation and in turn, it is essential for catalysis. 

Determination of recombinant strain for L-asparaginase production 

Modified ezapelc's dox broth way used for enrichment of bacteria producing L-asparaginase enzyme. The 

(MED) media was supplement asparagine as substrate and phenol red, as an indicator /when L-asparaginase 

act on L-asparagine, ammonia is liberated leading to conversion of yellow color in phenol red to pink, in 

alkaline condition. pH 6.8 at 25oC phenol red 0.0094. and sterilized by autoclaving at 121C for 20minute. the 

result as shown in figure 4, indicated that all the tested colonies by (MED) media, were an able to produce L-

asparaginase enzyme with different levels. 
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Effect of pH and temperature on enzyme activity  

The evaluation of the influence caused by the pH variation on the activity of the pET-28a (+)/L-ASP enzyme, 

was carried out based on the colorimetric method of Nesslerization, using different buffers, which ranged 

from pH 3 to 11. As can be seen in Figure 5, asp_pseudopedo, showed maximum catalytic activity at pH 8.5, 

as well as the assay that determines the optimum temperature for the enzymatic activity of pET-28a (+)/L-

ASP, with the application of a temperature elevation ramp ranging from 20 °C to 90 °C. Regarding the 

influence of temperature on the activity of asp_pseudopedo, an optimal temperature of 60°C was obtained 

as shown in figure (6). 

Enzyme Kinetics 

To assesses the kinetic mechanism of the pET-28a (+)/L-ASP enzyme, where gradual concentrations of L-

asparagine, whose variation range ranged from 62.5 µM to 9.91 mM, The kinetic curve assay aims to evaluate 

the hydrolytic capacity of the enzyme against different substrate concentrations up to the complete 

saturation point of the catalytic sites, under optimum pH and fixed temperature, As shown in Figure 7, 

asp_pseudopedo reaches the plateau at 8 mM L-asparagine, Thus, the kinetic calculations were calculated 

using the SigrafW software and indicated a Km value equal to 3 mM and a Vmax of 168.2 µmol/min/mg, 

approaching that shown by Willis & Woolfolk (1974). 

Phylogenetic tree analysis Of Pseudopedobacter saltans 

by sing the neighbor rejoining approach to obtain the genetic algorithms based on evolutionary distances 

was estimated from nucleotides and amino acid sequences of P. saltans L-asparaginase I, the phylogenetic 

relationship of P. saltans L. asparaginase I with other Pseudopedobacter species may be seen in the tree at 

the nucleotide and amino acid levels. Bacterial species shifted to separate clusters for the L. asparaginase 

gene at both nucleotide and amino acid levels (Fig 8), indicating that the organisms had diverged. (Saeed et 

al., 2018). 

Annotation of the Pseudopedobacter saltans structure and 3D structure prediction 

The secondary structure of asparaginase type I gene was predicted by SAS online program, The output of SAS 

program revealed that the asparaginase type I from P. saltans showed similarity sequence identity of 41.8% 

with the crystal structure of PDB (Protein Database Bank): 2OCD_A: asparaginase type I from Vibrio cholerae 

O1 biovar eltor str. N16961. The primary structure of P. saltans L-asparaginase I and protein module's 

secondary structure annotation expectations revealed some maintained distinctive lineaments, 

characteristic lineaments see Figure (9 and 10); P. saltans L. asparaginase I Classified by unique signature of 

common conserved for microbial L. asparaginase that characterized by the invariant amino acid residues; 

Thr12, Ala23, Lys25, Ser88, Asp89, Lys165, Leu291. that included in catalysis. Also, the P. saltans L-

asparaginase I primary 2D structure involve a conserved catalytic residue to L. glutaminase I, the amino acid 

residues; Thr12, Ala23, Ser88, Glu286, Leu291 (fig 9 and 11). the expectation of the 2D structure was 

performed by using PSIPRED program Based on the amino acid composition, the predicted calculated (pI) for 

P. saltans L. asparaginase was found to be 6.13 (Saeed et al., 2018). 

CONCLUSION AND RECOMMENDATIONS 
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 1. Conclusively, this study did successfully produce the L-asparaginase from A-novel bacteria 

Pseudopedobacter saltans cloning and heterologous expression of the L-asparaginase in E. coli for the first 

time, it is become ready to study its therapeutic properties against cancer in the future. 

2. and the finding of this study revel It is quite similar to type L-asparaginases I of E. coli which is distinctly 

specific for L-Asparagine that located into cytosol and act in solution as homodimer.  

3. Finally, the cloning and expression of A Novel-bacterial of P. saltans L-asparaginase enzyme   in soluble and 

active stats, was successfully achieved. 
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Figure 11: preserved the P. saltans L. asparaginase I of amino acid residues that is essential in different 

ligands and metal ions binding 
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