

Gsp $\alpha\omega$ -Closed Sets In Topological Spaces

N. Meenakumari and S.Gayathri

Associate professor, PG and Research Department of Mathematics, M.Phil Student, PG and Research Department of Mathematics Seethalakshmi Ramaswami College, Tiruchirappalli-2.

Abstract: The aim of this paper is to introduce a new class of closed sets namely $gsp\alpha\omega$ -closed sets which is obtained by generalizing gsp-closed sets via $\alpha\omega$ - open sets and investigate some of their basic properties in topological spaces.

Introduction:

LEVINE [5] introduced semi-open sets in 1963. In 1986, **D.ANDRIJIEVIC** [1] introduced the notion of semi-pre- open sets in topological spaces. In 2000, the ω closed sets [9] were introduced and studied by **P.SUNDARAM** and **M.SHRIK JOHN**. **M.PARIMALA** [8] introduced the concept of $\alpha\omega$ -closed sets, and studied their properties in 2017. The aim of this paper is to introduce a new class of closed sets namely gsp $\alpha \alpha\omega$ - closed sets and investigate some of their basic properties in topological spaces.

1. PRELIMINARIES:

DEFINITION 1.1: A subset **A** of a space (X, τ) is called a

- 1. semi open set if $A \subseteq cl(int(A))$
- 2. α -open set if $A \subseteq int(cl(int(A)))$
- 3. semi pre(= β)-open set if $A \subseteq cl(int(cl(A)))$
- 4. b-open set if $A \subseteq (cl(int(A))) \cup (int(cl(A)))$
- 5. regular-open set if A = int(cl(A))

DEFINITION 1.2: A subset **A** of a space (X, τ) is called

- 1. generalized closed (briefly g-closed) if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 2. regular-generalized closed(briefly rg-closed)if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is regularopen.
- 3. generalized b-closed (briefly gb-closed) if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 4. regular-generalized b- closed(briefly rgb-closed)if $bcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular-open
- 5. generalized semi-preregular-closed (briefly gspr-closed) if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open
- 6. generalized β -closed (briefly g β -closed) if β cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is open.

- 7. $\psi \hat{\mathbf{g}}$ -closedif $\psi \mathbf{cl}(\mathbf{A}) \subseteq \mathbf{U}$ whenever $\mathbf{A} \subseteq \mathbf{U}$ andUis $\hat{\mathbf{g}}$ -open
- 8. ψg -closed if $\psi cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 9. generalized semi-closed (briefly gs-closed) if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 10. \hat{n}^* -closed if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open
- 11. ψ -closed if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open
- 12. $\omega(\text{or}\hat{\mathbf{g}})$ closed if $\mathbf{cl}(\mathbf{A}) \subseteq \mathbf{U}$ whenever $\mathbf{A} \subseteq \mathbf{U}$ and \mathbf{U} is semi-open
- 13. $\alpha\omega$ -closed if ω cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is α -open
- 14. $g\alpha\omega$ -closed if $cl(A)\subseteq U$ whenever $A\subseteq U$ and U is $\alpha\omega$ -open

2. $gsp\alpha\omega$ -CLOSED SET

DEFINITION 2.1:

A subset A of (X, τ) is called a $\mathbf{gsp}\alpha\omega$ -closed set if $\mathrm{spcl}(A) \subseteq U$ whenever $A \subseteq U$ and U is $\alpha\omega$ -open in (X, τ) . The complement of $\mathbf{gsp}\alpha\omega$ -closed set is $\mathbf{gsp}\alpha\omega$ -open set.

EXAMPLE2.2:

```
Let X = {a, b, c}; \tau= {X,\phi, {c}, {a, c}}. Closed sets are {X,\phi, {b}, {a, b}} semi-pre closed sets are {X,\phi, {a}, {b}, {a, b}}. \alpha\omega-open sets are {X,\phi, {c}, {a, c}} gsp\alpha\omega -closed sets are {X,\phi, {a}, {b}, {b, c}}
```

THEOREM 2.3:

Every closed set is $gsp\alpha\omega$ -closed set

PROOF:

```
Let A be a closed set, cl(A) = A. Let A \subseteq U, U be \alpha \omega-open We've spcl(A) \subseteq cl(A) \subseteq U \Rightarrow spcl(A) \subseteq U. Hence A is gsp\alpha \omega-closed set. The converse of the above theorem need not be true as seen from the following example.
```

```
EXAMPLE 2.4: Let X = \{a, b, c\}, \tau = \{X, \phi, \{c\}, \{a, c\}\}\} Closed sets are \{X, \phi, \{b\}, \{a, b\}, gsp\alpha\omega-closed sets are \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\}\} Let A = \{a\}. Here, \{a\} is gsp\alpha\omega-closed set but not closed set in (X, \tau)
```

THEOREM 2.5:

Every regular-closed set is $gsp\alpha\omega$ -closed set

PROOF:

```
Let A be a regular-closed set. Let A\subseteq U, U be \alpha\omega-open But, every regular closed set is closed set: cl(A)=A. We've spcl(A)\subseteq cl(A)=A\subseteq U\Rightarrow spcl(A)\subseteq U. Hence A is gsp\alpha\omega-closed set The converse of the above theorem need not be true as seen from the following example.
```

EXAMPLE 2.6:

```
Let X = \{a, b, c\}, \tau = \{X, \phi, \{b\}, \{c\}, \{b, c\}\}, Closed sets are \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}\} regular-closed sets are \{X, \phi, \{a, b\}, \{a, c\}\}, \{a, b\}, \{a, c\}\}. Let
```

Nat. Volatiles & Essent. Oils, 2021; 8(4): 16634-16639

A ={b}. Here, {b} is $gsp\alpha\omega$ -closed set but not regular-closed set in (X, τ).

THEOREM 2.7:

Every pre-closed set is $gsp\alpha\omega$ -closed set

PROOF:

Let A be a pre-closed set. Let $A\subseteq U, U$ be $\alpha\omega$ -open Since A is pre-closed, pcl(A)=A. We'vespcl $(A)\subseteq pcl(A)=A\subseteq U\Rightarrow spcl(A)\subseteq U$ Hence A is $gsp\alpha\omega$ -closed set

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 2.8:

```
Let X = {a, b, c}, \tau= {X, \phi, {a}, {a, c}}. Closed sets are {X,\phi, {b}, {b, c}} pre-closed sets are {X,\phi, {b}, {c}, {b, c}} gsp\alpha\omega-closed sets are {X,\phi, {b}, {c}, {a, b}, {b, c}} Let A = {a,b} Here, {a, b}isgsp\alpha\omega-closed set but not pre-closed set in (X,\tau)
```

THEOREM 2.9:

Every α -closed set is $gsp\alpha\omega$ -closed set

PROOF:

```
Let A be a \,\alpha-closed set. Let A\subseteq U,U be \alpha\omega-open Since A is \alpha-closed, cl\left(int(cl(A))\right)=A We've A\subseteq cl(A)\Rightarrow cl(int(cl(A)))\subseteq cl(A). Also, cl(A)=A \Rightarrow cl(int(A))\subseteq A\Rightarrow int\left(cl(int(A))\right)\subseteq int(A)\subseteq A, [since int(A)\subseteq A] \Rightarrow int\left(cl(int(A))\right)\subseteq A\subseteq U\Rightarrow spcl(A)\subseteq U. Hence A is gsp\alpha\omega-closed set The converse of the above theorem need not be true as seen from the following example.
```

EXAMPLE 2.10:

```
Let X = {a, b, c}, \tau= {X,\phi, {c}, {a, c}}, Closed sets are {X,\phi, {b}, {a, b}} \alpha-closed sets are {X,\phi, {a}, {b}, {a, b}} gsp\alpha\omega-closed sets are {X,\phi, {a}, {b}, {a, b}, {b, c}}. Let A = {b,c} Here, {b, c} is gsp\alpha\omega-closed set but not \alpha-closed set in (X,\tau).
```

THEOREM 2.11:

Every semi-pre-closed set is $gsp\alpha\omega$ -closed set

PROOF:

```
Let A be a semi-pre-closed set. Let A\subseteq U, U be \alpha\omega-open Since A is semi-pre-closed, spcl(A)=A\Rightarrow spcl(A)=A\subseteq U : spcl(A)\subseteq U Hence A is gsp\alpha\omega-closed set
```

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 2.12:

```
Let X = \{a, b, c\}, \tau = \{X, \phi, \{c\}, \{a, c\}\}, Closed sets are \{X, \phi, \{b\}, \{a, b\}\} semi-pre-closed sets are \{X, \phi, \{a\}, \{b\}, \{a, b\}\} gsp\alpha\omega-closed sets are \{X, \phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}\} Let A = \{b, c\} Here, \{b, c\} is gsp\alpha\omega-closed set but not semi-pre-closed set in (X, \tau)
```

THEOREM 2.13:

Every $g\alpha\omega$ -closed set is $gsp\alpha\omega$ -closed set

PROOF:

Let A be a $g\alpha\omega$ -closed set Let $A\subseteq U$, U be $\alpha\omega$ -open Since A is $g\alpha\omega$ -closed, $cl(A)\subseteq U$, U is $\alpha\omega$ -open We've $spcl(A)\subseteq cl(A)\subseteq U\Rightarrow spcl(A)\subseteq U$. Hence A is $gsp\alpha\omega$ -closed set

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE 2.14:

```
Let X = {a, b, c}, \tau= {X,\phi, {b}, {a, b}}, Closed sets are {X,\phi, {c}, {a, c}} \alpha\omega-open sets are {X,\phi, {b}, {a, b}}, g\alpha\omega-closed sets are {X,\phi, {c}, {b, c}, {a, c}} gsp\alpha\omega-closed sets are {X,\phi, {a}, {c}, {b, c}, {a, c}}. Let A ={a} Here, {a} is gsp\alpha\omega-closed set but not g\alpha\omega-closed set in (X,\tau)
```

THEOREM 2.15:

Every $gp\alpha\omega$ -closed set is $gsp\alpha\omega$ -closed set

PROOF:

Let A be a gsp $\alpha\omega$ -closed set. Let $A\subseteq U, U$ be $\alpha\omega$ -open Since A is gp $\alpha\omega$ -closed, $pcl(A)\subseteq U, U$ is $\alpha\omega$ -open We've $spcl(A)\subseteq pcl(A)\subseteq U\Rightarrow spcl(A)\subseteq U$. Hence A is $gsp\alpha\omega$ -closed set

The converse of the above theorem need not be true as seen from the following example.

EXAMPLE-2.16:

```
Let X = {a, b, c}, \tau= {X, , {b}, {c}, {b, c}}, Closed sets are {X,\phi, {a}, {a, b}, {a, c}} pre-closed sets are {X, , {a}, {a, b}, {a, c}}, \alpha\omega-open sets are {X,\phi, {b}, {c}, {b, c}} gp\alpha\omega-closed sets are {X,\phi, {a}, {a, b}, {a, c}} gsp\alpha\omega-closed sets are {X, , {a}, {b}, {c}, {a, b}, {a, c}}. Let A ={b} Here, {b} is gsp\alpha\omega-closed set but not gp\alpha\omega-closed set in (X,\tau)
```

THEOREM-2.17:

If A is $\alpha\omega$ -open and $gsp\alpha\omega$ -closed, then A is semi-pre-closed.

PROOF:

```
Let A\subseteq U, U be\alpha\omega-open. Since A is \alpha\omega-open, take A=U ___(1) Also, A is gsp\alpha\omega-closedand open, then A\subseteq A and spcl(A)\subseteq U=A (by (1)) \Rightarrow A\subseteq A and spcl(A)\subseteq A. spcl(A)=A. Hence A is semi-pre-closed
```

THEOREM 2.18:

Union of two $gsp\alpha\omega$ -closed sets is $gsp\alpha\omega$ -closed set

PROOF:

Let A and B be two $gsp\alpha\omega$ -closed sets in (X,τ) Let G be any $\alpha\omega$ -open set in (X,τ) such that $A\cup B\subseteq G$, then $A\subseteq G$ and $B\subseteq G$ Since A and B are $gsp\alpha\omega$ -closed sets, then $spcl(A)\subseteq G$ and $spcl(B)\subseteq G$ But, $spcl(A\cup B)=spcl(A)\cup spcl(B)\subseteq G$ $\Rightarrow spcl(A\cup B)\subseteq G$, Gis $\alpha\omega$ -open Hence $A\cup B$ is $gsp\alpha\omega$ -closedset

REMARK 2.19:

Intersection of two gsp $\alpha\omega$ -closed sets need not be gsp $\alpha\omega$ -closed sets For example, X = {a, b, c}, τ = {X, ϕ , {c}}, Closed sets are {X, ϕ , {a, b}} gsp $\alpha\omega$ -closed sets are {X, ϕ , {b}, {c}, {a, b}, {b, c}, {a, c}} Here, {a, b} and {a, c} are gsp $\alpha\omega$ -closed sets But {a, b} Ω {a, c} = {a} is not a gsp $\alpha\omega$ -closed set

THEOREM 2.20:

If A is $gsp\alpha\omega$ -closed set in X and $A\subseteq B\subseteq spcl(A)$, then B is also $gsp\alpha\omega$ -closed set in X.

PROOF:

Let A be $\operatorname{gsp}\alpha\omega$ -closed set in X and $A\subseteq B\subseteq\operatorname{spcl}(A)$. Let $B\subseteq U$ and U be $\alpha\omega$ -open set in X. Since $A\subseteq B$, then $A\subseteq U$ and A is $\operatorname{gsp}\alpha\omega$ -closed set, $\operatorname{spcl}(A)\subseteq U$ Given $B\subseteq\operatorname{spcl}(A)\Rightarrow\operatorname{spcl}(B)\subseteq\operatorname{spcl}(A))\Rightarrow\operatorname{spcl}(B)\subseteq\operatorname{spcl}(A)\subseteq U$ $\therefore\operatorname{spcl}(B)\subseteq U$. Hence B is $\operatorname{gsp}\alpha\omega$ -closed set in X.

THEOREM 2.21:

Let $A \subseteq Y \subseteq X$ and suppose that A is $gsp\alpha\omega$ -closedsetin X. Then A is $gsp\alpha\omega$ -closed set relative to Y.

PROOF:

Let $A \subseteq Y \cap G$, G be $\alpha\omega$ -open. Since A is $gsp\alpha\omega$ -closed set, then $spcl(A) \subseteq G$, whenever $A \subseteq G$, G is $\alpha\omega$ -open $\Rightarrow Y \cap spcl(A) \subseteq Y \cap G$. Hence A is $gsp\alpha\omega$ -closed set relative to Y.

REMARK 2.22:

The set gp*-closed set and $gsp\alpha\omega$ -closed set are independent and this can be seen from the following example.

2.23 EXAMPLE:

```
Let X = {a, b,c}, \tau= {X, , {b}, {a, b}}

Closed sets are {X, \phi, {c}, {a, c}}

gp-open sets are {X,\phi, {a}, {b}, {b, c}, {a, c}}

semi-pre closed sets are {X,\phi, {a}, {c}, {b, c}, {a, c}}

\alpha\omega-open sets are {X,\phi, {b}, {a, b}}

Let A = {a, b} \subseteq X, cl(A) = X \subseteq X.
```

Nat. Volatiles & Essent. Oils, 2021; 8(4): 16634-16639

```
Let = \{a\} \subseteq \{a,b\}, \operatorname{spcl}(A) = \{a\} \subseteq \{a,b\}. \operatorname{gp}^*-closed sets are \{X,\phi, \{c\}, \{a,b\}, \{a,c\}} \operatorname{gsp}\alpha\omega-closed sets are \{X,\{a\},\{c\},\{b,c\},\{a,c\}\}. Here, the sets \{a\} and \{b,c\} are \operatorname{gsp}\alpha\omega-closed set but not \operatorname{gp}^*closed set. Also, the set \{a,b\} is \operatorname{gp}^*-closed set but not \operatorname{gsp}\alpha\omega-closed set.
```

CONCLUSION

In this paper we have introduced $gsp\alpha\omega$ -closed set and studied some of their properties in topological spaces. Also we can extend the study to $gsp\alpha\omega$ -continuous maps, $gsp\alpha\omega$ -irresolute maps .This study can be extended to the concept of compactness, connectedness and separation axioms. Also it can be extended to spaces like Bitopology, Fuzzy and Ideal topological spaces.

REFERENCES

- [1] Andrijievic .D, semi pre-open sets, Mat.vesink, 38(1986), 24-32.
- [2] Devi.R, Maki.H and Balachandran.k, Generalized α -closed maps and α generalized closed maps,Indian.J.Pure.Appl.Math,29(1)(1998),37-49.
- [3] Dontchev J, On generalizing semi pre-open sets, Mem.Fac.sci.kochi.ser.A, Mat.,hl6(1995), 35-38.
- [4] Karpagadevi.M and Pushpalatha.A, Rw-closed maps and RW-open maps in topological spaces, International journal of computer application technology and research,vol2,issue 2,91-93,2013.
- [5] Levine .N, semi-open sets in topological spaces, Amer.Math.Monthly, 70(1963), 36-41.
- [6] Levine.N, generalized closed sets in topology, Rend.Circ.Math.palermo,19(2)(1970),89-96.
- [7] Maki .H, Devi .R and Balachandran .K, Generalized α c-losed sets in topology, Bull.FukuokaUni.Ed.Part III, 42(1993), 13-21.
- [8] Parimala .M, Udhaya kumar .R, Jeevitha .R, Biju.V, On αW-closed sets in topological spaces, International J. Pure. App. Math, 115(5)(2017), 1049-1056.
- [9] Sundaram .P and Shrik John .M, On ω -closed sets in topology, Acta CienciaIndica 4(2000), 389-392.
- [10] Veera kumar .M.K.R.S, On g-closed sets in topological spaces, Allahabad Math. Soc., 18(2003), 99-112.