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1.Introduction:

Later the idea of uncertainty collections of Zadeh [20], Lee [10] presented another trend of uncertainty
collections called bipolar valued uncertainty sets (BVFS). Bipolar valued uncertainty set defined over the
interval [-1, 1] which was to be extended from the ordinary fuzzy set interval [0, 1]. The idea of bipolar
parameterized collections and several identification of bipolar parameterized collection were presented by
Shabir and Naz [15]. Abdulla et al. [1] studied the idea of bipolar uncertainty parameterized collections by
combining parameterized collections and bipolar uncertainty collections sponsored by Zhang [18, 19], and
given parametrical ideal identifications of bipolar uncertainty parameterized collections. Naz and Shabir
[13] discussed the idea of uncertainty bipolar of parameterized collections, and studied various structures
on uncertainty bipolar parameterized collections. Akram et.al. [3] explained the idea of bipolar uncertainty
soft sub semi group and bipolar uncertainty soft-ideals in a semi group. The minus membership function
and the plus membership function defined in [-1, 0] and [0, 1] in bipolar uncertainty setting. In this bipolar
uncertainty setting ‘0’ refers that the elements are subjected to irrelevant. They are familiar representation
and down word representation. The familiar forms of bipolar uncertainty collections are used in their
representations. In 2011, bipolar valued fuzzy K-sub algebras are analyzed by Farhat Nisar [5]. Inspired by
the concepts recently, the result of bipolar valued fuzzy sub algebras/ideals of a BF-algebra [4] has been
discussed by applying the notion of bipolar valued uncertainty collection (BVFS) in BF-algebras [4].
Fermatean uncertainty bipolar model as a combination of uncertainty bipolar model and Pythagorean
uncertainty bipolar. Group symmetry analyzes a moral character to molecule structures. Isotope molecules
decay with a certain rate, so the uncertainty sense comes into it. But till now no algebraic structure is
discussed on Fermatean uncertainty situations . Senapti and Yager [17] coined the Fermatean uncertainty
set (FFS) with its relational measures. Collections data between parameterized collections were studied by
Maiji et al. [12]. Ali et al. [2] explained various identifications on the parameterized collections, and Sezgin
and Atagun [16] investigated on parameterized set identifications as well. In this paper, we introduce the
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concept of an extension fermatean fuzzy soft subgroup(EFFSG) and have studied their related properties.
Also we study the level subset of a fermatean fuzzy soft set and how they are acted in extended group
structure.

2. Preliminaries and Basic Definition:

A non-empty set G together with extension structure operation @:G™ — G,where n> 2 is called an
extension groupiod structure and is denoted by (G,D). According to the general convention used in the
theory of extension groupiods structure of elements X , X1 ... Xi is denoted by x/In this case, if j <i,it
denotes the empty symbol. Ifx;,1 = X;12 = Xj13 = - X;4; = X, then instead of x‘*iwe writex®)- In this
conversion @(xq,X5, X3 ....X,) = O(x™) and  O(xy, %5, X3, .. X, X, X o, X)) = (D(xi,x(p),x”p“). An
extension groupiod structure (G,@) is called an (ij)- associative if @(x'™%, f(x™*71),x2"71) =
P(x=1, f(x™71),x2""1) hold for all x5, %2, ... X2n—1 € G. If the identity holds for i < i <n, then we
say that the operation @ is associative and (G, @) is called an extension structure of semigroup. It is clear
that an extension groupiod structure in associative if and if only is (i,j) associative forall j = 2,3, ...n.If the
binary case (where n=2) it is a usual semigroup. If for all x¢, x4, ... x, € Gand fixed i € {1,2,3 ...n} then their
exists an element z € G such that (D(xi_l,Z,x”) = x% — — — —(1) then we say that this equation(1) is i-
solvable or solvable at the place ‘iI’. If the solution is unique, then we say that equation (1) is uniquely i-
solvable. An extension groupiod structure (G,®) uniquely solvable for all i =1,2,3..n is called an
extension structure of quasi group. An associative extension structure of quasi group is an Extension
Structure group.

Finding an extension structure operation @,when n> 3, then elements a™™“, we obtain the new binary
operation x * y = @(x,a™"2,y). If (G, ®) is an extension group structure then (G,®) is a group.. choosing
different elements a2 we different groups. So, we consider only the groups of (Dudek and J.Michal ski)
the form ret, (G, ®) = (G, °) where (x.y) = (x,a™ 2,y). In this group e = a,x~! = @(a,a™ 3,x, a). In the
theory of extension group structures, the following theorem plays an important role.

n-2

2.1Theorem: For any extension group structure (G, @) there exist a group (G - ) its auto-morphism y and
an element b € G such that @(x™) = x(x1),c x(x2)e, X (x3) wee. 0 ¥ 1(x,)sb — — — (2) hold for all x™ € G.
In what follows, G is a non-empty set and (G, @) is an extension group structure unless otherwise specified.

2.2 Definition [Senapati and Yager 2019(a)]

Let X be an universe of discovers. A fermatean fuzzy set (FFS) F in X is an object having the form F =
{< x,mp(x), np(x) > xeX} where mp(x): x - [0,1]ng(x): x = [0,1] including the condition 0 < ((my(x)? <
np(x))% < 1 for all x € X. The number mz(x) and np(x) denote the degree of membership and degree of
non-membership of the element x € F.

For any FFS of F and xeX, [z(x) = i/l —mgp(x); — np(x)3 is identified as the degree of indeterminacy of
X to F. For convenience, Senapati and Yager called (mp(x),ng(x)) a fermatean fuzzy number(FFN) denoted
by F = (mg,ng). We shall point out the membership grades (MGS) related to fermatean fuzzy sets as
fermatean membership grades (FMGS).

2.3 Theorem: The set of FMGS is greater than the set of Pythagorean membership grades(PMGS) and
intuitionistic membership grade(IMGS).This development can be evidently recognized infig-1.

Y
(1,0,0) Neutrosophic set
-

/ (0,0,1) Spherical fuzzy set

fig-1
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Here we notice that IMGs are all points breath terms < 1, the PMGS are all points x2 + y2 < 1
and the FMGS are all the points with x? + y2 < 1. We see that the FMGS enable the presentation of a
bigger body of non-standard membership grades than IMGS and PMGS.

2.4 Definition:
Let (G,®) be an extension group structure. A fuzzy subset of G is called subgroup of (G, @) if the following
axioms holds:

(EFG1): u(D(x™)) = T{u(x1), ... u(xn)}
(EFG2): u(x) = u(x),vx € G and x € G,

Note that for n=3 the second condition (EFG;) of definition (2.4) can be replaced the condition:

(EFGs): u(x) = u(x)vx € G, because in this case n=3, we havex = x. These rwo condition are equivalent
for all extension group structures in which for every x € G, then their exits a natural number k such that
x* = x where x* denotes the elements skew to x° = x.

3. Extension Structure of Fermatean Fuzzy Soft Subgroups

3.1 Definition: A FFS set F= (mg(x),nz(x)) in G is called extension structure of fermatean fuzzy soft
subgroup (ESFFSG) of (G, @) if the following axioms hold:

*(EFFSGa): mp(@(x1) = T{mp(x1), ... mp(x5)},

*(EFFSG2): np (B (x1) < S{np(xq) .o oo mp(xp),

*(EFFSG3): mp(x) = mp(x),

*(EFFSGa4): np(x) < ng(x),Vxqy,x, €G.

3.2 Example: Consider (Z,0), where @:Z* — Z, is defined by @(x;, x5, %3, %x,) = S(x1, %, X3,%,) clearly
(Z,®) is a four dimension subgroup derived from addition group Z, Define FFS set F = (g, ng) is (Z,4, @)
as follows:

m(x) =0.6,if x =0;0.1if x =1,2,3

n(x) =04,if x =0;08if x =1,2,3

Then it is easy to verify that FFS set F = (mg, ng) is four dimensional structure of fuzzy soft subgroup of
(Zél-' ®)

3.3 Theorem: If {F; € A} is an arbitray family of an extension structure of fermatean fuzzy soft subgroup of
(G,¢), then F is an extension structure of fermaten fuzzy soft subgroup of (G,¢) where

F; = {(xi Amg(x) Vng(x))/x € G}

Proof:
The proof is obvious.

3.4 Theorem: If a FFSF=(mg,np) is G is an extension structure of fermatean fuzzy soft subgroup of
(G, D). Then so is *A where *A={x,mp, 1 — mg(x)/x € G}

Proof:

It is sufficient to show that mysatisfies the condition (EFFSG;) and (EFFSGa).
Let x™ € G.Then

mp(@(x™) =1 —-me(@(x™))

< 1—-T{mp(x1), mp(xz), ..., mp(xy)}

= S{mp(x1), mp(x2), ... mp(x)}

mp(x) =1 —mg(x)

<1-—mg(x)

= mp(x)

Hence *Ais EFFSG of (G, @).
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3.5 Definition: Let F = (mg,np) be FFSS in G and t, s € [0,1], then the set U (mg;t) = {x € G/mp(x) =
t} and L(ng;s) = {x € G/np(x) < s} is called(s,t)-level cut of G are extension sub-group structure of
(G, ) forany s, t € [0,1].

Proof:
Let F be EFFSG of (G,D) for any s,t € [0,1], then mp(x;) =t and np(x;) < s for all
i=1,2,3,..nthus
mp(@(x™)) = T{mp(x1), mp(x2) ..., mp(x,)}
>t
Which implies  @(x™) € U(mg; t)
nF((D(xn)) < S{np(x1), np(x2), .. np(x)}
<s
Which implies @(x™) € L(ng; s)
Moreover mg(x) = mg(x)
> tand
np(x) < np(x)
Which implies x € U(mg; t) and x € L(ng;t).

Thus (s,t)-level cut are extension subgroup structure of (G, ®). Conversely, assume that (s,t)-level cut are
extension subgroup structure of (G,. ). Let us define

t = T{mg(xq), mp(xy), .. mp(x,)} and s = S{mp(x;), mp(xy), ..., mp(x,)}, for some x™G. Then obviously
X; €U (mp:t) and x; € L(ng:s). Consequently, @(x™) € U(mg:t) and @(x™) € L(mg:t).
ThusT{mg(x1), mp(x;), .. mp(x,)} and nF((ZS(x”)) < s =S{np(xy),np(xy),..np(x,)}. Now let x €U
(mp:t) and x € L(ng:s). Then mp(x) =t =t and np(x) =s < s thus x € U(mp:t) and x € L(ng:s).
Since by the assumption x € U(mg:t) and x € L(ng:s) where mp(x) =t = mp(x) and ng(x) <s =
ng(x).

The proof is complete, by using the above theorem, we can prove the following characteristion of EFFSG.

3.6 Theorem: A FFSS A in G is EFFSG of (G, @) if and only if the (s,t) —level cut of G are the extension of
subgroup structure of (G, @) foralli = 1,2,3...n.and all x™ € G, F satifies the following conditions.

(1) mp(@(x") = T{mp(x1), mp(x2), ... mp(xn)}

(2)nF((Z)(xn)) < S{np(x1),np(x2),.. np(xp)}

(B)mp(@(x™) = T{mp(xy), mp(xz), ... mp(x;_q), mp(@(x™), mp(x;—1), .. mp(xn)}

(4) nF(Q)(xn)) < S{nF (x1),np(x2), . nF(xi—l)' nF(Q)(xn))' np (xn))}

Proof:

Assume that F is EFFSG of (G, ). Similiary as in the proof of the theorem 3.5, we can proof each non-empty
level subset U(mg; t) and L(ng:s) are closure under the operation @,

Thatis x™ € U(mg: t) and x; € L(ng:s) implies @(x™) € U(mg: t) and @(x™) € L(ng:s).

Now let xo,xi‘l,x" where x, = (Z)(xo,xi‘l,Z,x") for some i = 1,2,3,..n.and z € G which implies x, €
U(mg:t) and xy € L(ng:s).Then, according to (3) and (4), we have mg(z) =t and ng(z) < s. So the
equation (1) has a solution z € mz(t) and z € nz(s). Then mean (s, t) —level cut are extension subgroup
structure. Conversely assume that (s, t)-level cut are extension subgroup structures. Then it is easy to
provide the condition (1) and (2). For x™ € G,

We define ty = T{mp(x1), mp(x3),..mp(x;_1), mF((Z)(x")),mF(xi_l), ..mgp(x,)}and

so = S{np(x1), np(x2), np(x3),. . np(xi-1), nF(®(xn))'nF(xi—1)' .. np(xy)}thenx;_; €n,

@(x™) €U (mp:ty) and xi~1, x™and @(x™) € L(ng:sy) thus mp(x;) = to and np(x;) < sp.

This proves the conditions (3) and (4).

3.7 Definition: Let (G, ®) and (G’,®) be an extension group structure. A mapping a: G — G’ is called an
extension homomorphism if a(@(x”)) = (D(a”(x”)), where a™(x™) = (a™(x1), a™(x3), ...a™(x,) for all
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x™ € G. For any FFSS A in G', we define the pre-image of A under a, denoted by a~1(A) is an FFSS in G
defined by a™'(4) = (mpy — 1(F),npq — 1(F)), where mpy — 1(F) = (Mpa(r) and ngy — 1(F) =
(nm(x)), Vx € G. For any FFSS F in G, we define the image of F under a, denoted by a(F), is FFSS is G’

define by a(F) = (asup, (mg), Ains (nF)), where

Sup o

asup(mF(X) = x € a—l(y) mF(x) ’ lfa 1(}’) * 0;
0 , otherwise.

~

~ inf .
G () = iy O a0 0;

<
\0 , otherwise

forallx e Gand y € G'.

3.8 Theorem: Let a be an extension homomorphism mapping grom G to G’ with a(x) = a(x) forall x™ €
G and F is an extension fermatean fuzzy soft subgroup of (Gj,(Z)).Then a~1(F) is an extension fermatean
fuzzy soft subgroup of (G, @).

Proof:
Let x™ € G, we have
Mg (F)(@(x1) = mp(a(B(xq)
=mp(a™(@(x"))
> T{mpa(x,), mpa(xy,), ....mpa(x,)}
=T{m, — 1F(xy),my — 1F(xy),....mg — 1F (x;,)}
ne = 1F(0(x1)) = ne(@(@(x,))
=ng(a"(@(x"))
= S{nF(a(xl)), np(a(xz)), - nF(a(xn))}.
= S{n, — 1F(x1),ngF(x3), .ng — 1F (x,)}
mg — 1F (x) = mpa(x)
> mpa(x)
=m, — 1F(x)
ng, — 1F(x) = npa(x)
> npa(x)
=n, — 1F(x)

This proof is completed . If we strengthen the condition, then we can construct the converse of the
Theorem (3.9) as follows.

3.9 Theorem: Let @ be an extension homomorphism mapping from G to G’ with a~1(F) is an extension
fermatean fuzzy soft subgroup of (G, @). Then F is an extension fermatean fuzzy soft subgroup of (G.).

Proof:
For any x € G/, there exits a € G, such that a(a,)ex; and for any @(x™) € (Gj, @), then there exist
@(a™) € (G, D) such that a(p(a™) = O(x™).
Then, mF((D(x” )) =mg(a(e(x™))
=mgl - F(p(a))"
=T{m, — 1F(a,),m, — 1F(ay), ..., m, — 1F(a,)}
= T{mg(x1), my (x2), ..., mp(x)}
nF(Q)(xn)) = np(a(p(a))
=n, — 1F(q)(a"))
> S{n, — 1F(a, ),n, — 1F(ay), ....n, — 1F(a,)}
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= S{ne(a(@))ne(a(@)), - . np(a(a,))
= S{np(x1), np(x2), .., np(xp)}
For any x € G there exist a € G such that a(a) = x, we have
mp(x) = mF(a(a))
=my — 1F(a)
> mp(a) — 1F(a)
= mF(a(a))
= mg(x)
np(x) = np(a(a))
=np — 1F(a)
>np(a) — 1F(a)
= nF(a(a))
= ng(x)
This complete the proof.

3.10Theorem: Let abe a mapping from G to G'. If F is an EFFSG of (G, ®),Then x, agyp (Mp), @ins (np)) is
an EFFSG of (G/, 9).

Proof:
Let @ be a mapping from G in to G’/ and let x™ € G and y™ € G’. Nothing that {x;(i = 1,2,3,...n)/
a M (™M)} S {@(™) € G/xy € a (@), . xn € @ (@(Y™)}.
We have ag, (mp)(@(y™)) = sup {mp(x™)/x; € a " (B(y™))}
< sup {mp(B(x™))/x1 € a™(@(y1)), X2 € a7 (B(12)), - xna™  (B(Yn)),
= sup {T{mp(x1), ... mp (x,)}/%1 € a™(B(V1)), .. X € @~ (@B ()}
= T{asup (mF)yl » Asup (mF)yZ....,asup (mF)Yn }
=apr  (p)(BQ™) = inf (np(y™)/x; € a =" (Y™}
< inf{(ng) ( @Y™ /%1 € a™*(@(¥1)), x2 € ™ (B(V2)), - Xn@” (B()), }
= S{inf {np(x1) /%1 € a1 (¥1), ... Inf{np(x,)/xn € an (), =
S(@int (Mp(Y1), Aing (Mp(Y2), - ing (Mp ()
Asup (Mp(x)) = sup {(mp(x)/x € a (B},
> {sup (mp(x)/x € a ()},
= Usup (mF (x))
and
Qing (np () = inf{(np(x)/x € a™ (D)},
> {inf (np(x)/x € a” (B},
= Qinf (nF(x))
This complete the proof.

3.11 Corollary: Let F be EFFSG of (G,D),if their exists an elements a€ Gsuch that mz(a) > mz(x) and
np(x) < np(x) for every x € G. Then Fis an EFFSG of a group @(G, ).

Proof: For all x,y,a € G, we have
mF(x°Y) =Mmg (Q(XJ an—Z) }’))
= T{mp(x), mp(a), mp(y)}
= T{mp(x), mp(y)}
nF(x°Y) =MNg (Q(x' an—Z, }’))
= S{ng(x),np(a), np(y)}
= S{np(x),np(y)}
mF(x—l) =mgp ((Z)(x, a(n—Z)’y))
= T{mp(x), mp(x), mp(a), mp(a)}
= mp(x)
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np(x™1) = ng ((D(x, a™?¥), a))
= S{ng(x), np(x), np(a), np(@)}
= ng(x)
This completes the proof. In the above theorem, the assumption that mp(a) = mp(x) and ng(a) < np(x)
can not be omitted.

3.12 Example: Consider (Z,,®) where @:Z3 — Z, is defined by @(x;,x,, x3) = max{x,, x,, x3}. Clearly
(Z4, @) iis a ternary subgroup defined from Z,. Define FFSSF F = (my, ny) as
followsmp(x) = {0.2 ifx=0

0 ifx=123

Clearly F is fermatean fuzzy soft ternary subgroup of (Z,,®). For 6(Z,, @), we have mz(0,0) =
mF((D(O,l,O)) =mp(1) = 0.1 # T{mz(0),mz(0)} = 0.2. nr(0,0) = np(0(0,1,0) =np(1) =04 «
S{nr(0),n(0)} = 0.4. Hence the assumpation mg(a) = mg(x) and np(x) < ng(x) foralla,x € G, then F
is EFFSG of (G, ).

Proof
By theorem (2.1) any extension group structure can be represented of the form equation(2), we have
(G,) = 0(G, ), Ya(a,x,x"2) and b = ¢(a,a,....a). Then we have
mp(P(x)) = mg ((Z)(x, x'x(n—z)))
= T{mg(mg(x), me(x), mp(a), mp(a))}
= mp(x)
me (W2 () = my (8(a, (@), x*2))
= T{mp(mgp (@), mp(x),, mp(a))}
= mp(P(x)
= mp(x)
Consequently, mg (¢k(x)) >Yr(x)Vx € Gand k €N
and
np () = ng (B(a,x,x"=2))
= S{np (np(a), np(x), np(a))}
= np(x)
ne @2 (0) = np (9(a, @), x72))
< S{mp(mg(a), mp(x),, mp(a))}
=np(¥(x)
= np(x)
Consequently, n (1p"(x)) <Yr(x)Vx€eGandk €N

Similarly, for all x € G. We have
mp(b) =mp(9(a q, ....a))
= mg(a)
= mg(x)
ng(b) =nz(9(a q,...a))
= ng(a)
> ng(x)
Thus, mF((lp"(x)) = Mp (10 Y(x2)o W (X3)e, v vun o Y72 (2)o b)
> T{mp (x1), me (x2), mpp?(x3), ..., mpp™ 2 (x,), mp (b))}
= T{mp(x1), mp(x2), mp(x3), ..., mp(x,), mp(b)}
= T{mp (x1), mp(x2), mp(x3), ..., mp(x)}
np((W(x™) =np(re Pg)e Y2 (x3)e, cor eeer o P2 (X5)0 b)
> S{ng (1), NP (), nph? (x3), oo, Npp™ 2 (), np (b))}
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= S{ng(x1), np(x2), np(x3), o, np (x5), np (D)}
= T{np(x1),np(x2), np(x3), - o, e ()
We have x = (P (x)e1p?(x)e, .o P2 (x)ob) 1
Thus, mp(x) = mp(P(x)ehp?(x)e, .o Y 2(x)ob) 1
= T{mp(P)mpp?(x), ... mphp™ 2 (x)eb) "
> T{mp(x),mp(b)}
= mg(x)
Also, ng(x) = np(P(x)P?(x)s, .o Y™ 2(x)ob) 1
> S{np(PEOMpY? (x), ... mpp™ 2 (x)-b)
> S{ng(x),np(b)}
=np(x)
Hence the proof.

3.13 Corollary: If (G, @) is a ternary group structure, then any EFFSG of 8, (G, @) is an EFFSTG of (G, ¢).

Proof:

Since a is a neutral elements of a group 6,(G, ®) then mg(a) = mg(x) and ng(a) < ng(x)vVx € G. Thus
mp(a) = mp(x) and ng(a) < np(x). But in ternary group a=a for any a € G,where mg(a) = mp(x) =
mg(a) = mp(x) and np(a) = ng(a) < np(x).So, mp(a) = mp(a) =mpe(x)and ng(a) =ngla) <
np(x).Vx € G. This means that the assumptions of the theorem(3.15) are satisfied.

3.14 Example: Consider the ternary group Z;,, @), where ¢:Z3 - Z;, is defined by ¢(xq,%5,%3) =
max(x;, X5, x3), dervied from the addition group Z;,. Let F be an EFFSG of 8, ¢ (G, ¢) induced by subgroups
S, =1{1},8, = {5,113}, S5 ={1,3,5,7,9,11}. Define EFFSF as follows

(mp(x)) = 08if x =11

106ifx=5

0.4if x=1,3,79if x €S,

and

(nr()) =( 01ifx =11
0.2 ifx =5
0.5 if x =1,3,7,9
0.9 if x € S3

Then mp(5) = mp(7) = 0.4 * 0.6 = mp(5),nz(5) = ng(7) = 0.5 <« 0.3 = ng(5). Hence F is not an
EGGSGTG of (G, ).

3.15 Theorem: Let (G, ¢) be an extension group structure of [ —dervied from the group(G,. ) ,any EFFSGF
of (G, ) such that mg(l) = mp(x) and np(l) < ng(x) for every x € G is an EFFSG of (G,-).
Proof:
The condition (EFFSG;) and (EFFSG,) of Definition 3.1 are obvious. To prove (EFFSG3) and (EFFFSG,),
we have an extension group structure (G, ¢) [ —from the group (G,. ) which implies x = (x”_2 o l)_l ,
Where x™ 2 is the power of x in (G,-) . Thus, for all x € G.
me(x) = mp((x"2 1)

> mp((x"21)

> T{mp(x""2), mp(1)}

= mgp(x)

ng(x) =np((x"%1)

> np((x"2.10)

> S{np(x""%),np(D}

= ng(x)
Hence the proof.
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3.16 Theorem: Any FFSSG of a group, (G,.) is an EFFSSG of an group extension (G, ¢) dervied from (G, ).

Proof:
If an extension group structure (G, @) is derived from the group (G, ), then [ = e. Thus mg(e) = mp(x)and ng(e) <
ng(x)Vx € G.

Observations:

From the example (3.16) it follows that:

1.There are EFSSG of 8,(G, ¢) which are not EFFSSG of (G, ¢).

2.If theorem(3.15), the assumption mg(a) = mg(x)andng(a) < ng(x) can not be omitted. In example(3.14), we
have mp(1) = 0.4 #» 0.6 = mp(5)and np(1) = 0.5 < 0.3 = my(5).

3.The assumption mg(a) = mg(x) and np(a) < ng(x) can not be replaced by the natural assumption mg(a) =
mg(x)andng(a) < np(x).

In example(3.16), T=11, then mp(11) = mp(x) and ng(11) < np(11)Vz € Z,,.

Conclusion:

The concept of an extension fermatean fuzzy soft subgroup(EFFSG) and have studied their related properties. we
study the level subset of a fermatean fuzzy soft set and how they are acted in extended group structure. One can
obtain the extension structures based Neutrosophic soft Environment and Pythagorean fuzzy soft sets.
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