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Abstract 
Combining the predictions of various models often results in a model with increased predictive performance 
in numerous problem domains. Recently, machine learning methods such as boosting method, have been 
widely used in many scientific fields.  Boosting is an example of a method that has shown a lot of potentials. 
on the practical side, Experimental studies have demonstrated that combining models using boosting 
methods creates more accurate regression models. it was presented  methods for variable selection 
dependent on model-based gradient boosting, Model-based boosting is a method that fits a statistical model 
and selection variables. Certain machine learning algorithms handle high-dimensional data processing to 
improve data visualization. by comparing the three methods (lasso, probing, and cross-validation) dependent 
on the value of MSE, the probing has the lowest MSE so it prefers. The simulation and the real-data example 
both indicate that the proposed method (probing) outperforms the other current methods. 
 
Keywords: Cross-validation, Probing, variable selection, machine learning, gradient boosting, lasso. 

 
Introduction 
 
The fast advancement of computer technology in recent decades has resulted in several of the new and 
increasingly computationally intensive statistical data analysis methodologies emerging from the area of 
machine learning. 
Machine learning algorithms make a framework based on sample data, referred to as "training data," and 
then use it to make predictions or judgments without having to be explicitly programmed to do so (Clarke, et 
al.2008). Furthermore, Popular statistical regression techniques, such as ordinary least squares, are unable 
to estimate model coefficients at many of these states cause of the uniqueness of the covariance matrix. We 
explore statistical techniques for the analysis of high-dimensional data, with a strong reliance on recent 
developments including such gradient boosting algorithms, which fall under the category of "Model-based 
boosting algorithms". Gradient boosting algorithms have begun to emerge as one of the most important 
methods in modern medical research because they integrate a sophisticated ensemble optimization 
technique developed in the field of machine learning with classical regression modeling Boosting algorithms 
are among the most promising data analysis methodological techniques that have been created in the last 
two decades. (Mayr, et al. 2014). 
The initial algorithm emerged from machine learning, where it quickly gained popularity and was regarded as 
a potent tool for predicting events. Applied in statistical modeling, where it could be used to choose with 
assessing predictors' impact on a single dependent variable in many regression situations. Gradient boosting 
is one type of boosting. The gradient boosting algorithms are regulated by setting hyperparameters that 
govern the degree of penalization (Friedman, et al.2001). While resampling methods such as cross-validation 
and other related models are routinely used to calculate these hyperparameters. We suppose that p is an 
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amount bigger than n, as indicated as p> n. Almost all of the time, we study a situation in which there are 
more covariables than n, such as a linear model. 
𝑌 = 𝑋𝛽 + 𝜀𝑖                                                                              (1) 

Where 𝑌 =  (𝑌1, . . . , 𝑌𝑛)Ƭ is a response vector that is univariate, The nхp design matrix is represented by X. 

Column kth includes the covariable, Xk = (𝑋1
𝑘 , … , 𝑋𝑛

𝑘)τ, and 𝜀𝑖  =( 𝜀1, ..., 𝜀𝑛)T is the error (noise) term, with 
independent and identically distributed (i.i.d.) components. 
𝐸(𝜀𝑖) = 0 and Var (𝜀𝑖) = 𝜎2ℰ                    (2) 
When p> n, classical statistical methods, such as ordinary least squares (OLS).  estimation, Could not be 
utilized for estimate β, σ2𝜀 as they would overfit to data and generate serious identifiability problems 
(Bühlmann, et al. 2014). Equation 1 estimate of a high-dimensional linear model with 𝑝˃𝑛 necessitates an 
amount of optimization. The construction of p values that regulate some type I error measure with having a 
high power for spotting alternatives, is a difficulty in high-dimensional models (avoiding some type II error). 
The simplicity with which statistical boosting algorithms may well be interpreted is one of the reasons for 
their success (Mayr, et al.2014). 
Can use an interpretable function E (𝑌 | 𝑋 =  𝑥) = f(x), the statistical model seeks to quantify the link 
between one or more observable predictor variables as well as the expected outcome  E (Y). When there are 
multiple predictors, the effects of the individual variables are often put together to generate an additive 
model: 
ƒ(X)=β0+h1(𝑥1) + . . . + hp(𝑥p)                                                        (3) 
Where β0 is an intercept and h1(.),..., hp(.) combine the impacts of predictors x1,...,xp that are components 
of X, as well as the idea is to apply the link-function g (.) to model the expected value of the dependent 
variables based on observed predictors. 

𝑔(𝐸(𝑌|𝑋 = 𝑥)) = 𝛽𝑜 + ∑ ℎ𝑝
𝑝
𝑘−1  (𝑥𝑝 )                                          (4) 

For example, h1 represents the partial influence of predictor x1 (.). 
The stopping iteration, typically abbreviated as "mstop," is the most important parameter for boosting 
algorithms and tune. the initial choice of probing is used as a criterion for stopping (Thomas, et al.. 2017). 
Determining the correct stopping iteration of a boosting algorithm is critical since it reduces data overfitting 
and often increases prediction accuracy. 
 
2. Gradient Boosting 
 
Gradient boosting is an efficient strategy for estimating and selecting predictor effects in various regression 
models by applying concepts from the field of statistical learning. It's a regression issue machine learning 
technique. The basic idea of Boosting is to integrate simple rules to build an ensemble in which each ensemble 
member's efficiency is increased or boosted (converting many weak learners to form a single strong learner). 
Given a learning problem with a data set D= (Xi, Yi) i=1,...,n observations i.i.d. from a distribution over the 
joint space 𝑋×Y,  the p-dimensional input space 𝑋 = (𝑋1  × 𝑋2  ⋅ ⋅ ⋅× Xk) and an output space Y(e.g., 𝑌 = 𝑅). 
The target of regression is to find a function, 𝑓(x),  𝑋 →  𝑌, which maps as many variables in the feature space 
as feasible to the output items (Thomas, et al.2018). 

Gradient boosting algorithms seek to minimize a specified loss function,  (yi, f(xi)), which measures the 
difference between a predicted result value of f(xi) and a true (yi), based on the perceptions of boosting in 
function space as gradient descent. A disparity is minimized by fitting ineffective prediction functions, known 
as base learners, on previous errors repeatedly in integrating them into a powerful ensemble (Xingyu, 2016). 
Model-based gradient boosting (Algorithm 1). 
The technique iteratively updates a prediction using a tiny fraction of the base learner with either the perfect 
fit on the loss function's negative gradient. (Thomas, et al.. 2017), assuming at m = 0 w and a constant loss, 

the minimal initial value is 𝑓(0)̂    (𝑥) = 𝑐   : 
(1) Make m = m + 1 the iteration counter. 
(2) When 𝑚 ≤ mstop, calculate the negative gradient vector of the loss function.: 

𝑢(𝑖) = −
∂𝜌(𝑦,𝑓)

∂𝑓
|

𝑓′=𝑓∁[𝑚−1](𝑥(𝑖)),𝑦=𝑦(𝑖)
           (5) 

(3) Accommodate each base learner ℎk [𝑚](𝑥k) to a negative gradient vector u individually. 

(4) Determine ℎ̂k [𝑚] (xk∗ ), any a best-fitting base learner: 
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𝑗∗ = arg 𝑚𝑖𝑛
𝑙≤𝑘≤𝑃

∑  𝑛
𝑖=1 (𝑢(𝑖) − ℎ̂𝑘

[𝑚]
(𝑥𝑘

(𝑖)
))

2

         (6) 

(5) Replace a tiny fraction 0 ≤  𝑣 ≤  1  of this portion in the predictor: 

ƒ̂(x)[𝑚] =  ƒ̂(x)[𝑚−1] + 𝜐. ℎ̂[𝑚](𝑥   )          (7) 
The algorithm minimizes the following empirical risk during these steps. 
1

𝑁
∑ 𝜌(𝑦 , ƒ(𝑋)).𝑁

𝑖=1              (8) 

The challenge of estimating a regression function ƒ (.) for a statistical model, which links the predictor 
variables (X) to the outcome (Y), is described as follows: 

f̂(. ) = arg 𝑚𝑖𝑛
𝑓(.)

{𝐸𝑌,𝑋[𝜌(𝑌, f(𝑋))]}              (9) 

The L2 loss function is the most typical, which is 𝜌(y, ƒ (.)) = (y – ƒ (.))2, which leads to classical least squares 
regression of the mean: 𝑓(𝑥) =  𝐸(𝑌/𝑋 = 𝑥). 
In practice, the empirical risk is reduced by using a learning sample of observations (y1, x1),..., (yn, xn): 

ƒ̂ ( . ) = argƒ(.) min  
1

𝑁
∑ 𝜌𝑖𝑁

𝑖=1 (𝑦𝑖 , ƒ(𝑥 )).                 (10) 

 
3. The least absolute shrinkage and selection operator (lasso) 
 
A closely analogous approach recently introduced for linear regression issues is the lasso. It can generate 
sparse models and be used for both estimation and variable selection. In practice, this method is often 
adjusted to reach the best forecast accuracy. the prediction accuracy is employed as the criterion for selecting 
the tuning parameter, the approach is in general inconsistent in terms of variable selection. That is, the 
variable sets chosen are not consistent in identifying the genuine set of essential variables (Leng, et al. 2006). 
Because the optimization problem is convex, one appealing characteristic of the lasso is its computational 
feasibility for big p. In addition, the lasso can select variables via shrinking some estimated coefficients to 0. 

∑  𝑛
𝑖=1 (𝑦𝑗 − ∑  𝑗 𝑥𝑖𝑗

𝑖k𝛽𝑗)
2

+ 𝜆 ∑  P
𝑗=1 |𝛽𝑗

𝑘|                 (10) 

 
Tibshirani offered the lasso as a possible option (1996). Despite the differences in methodological methods, 
the lasso like gradient boosting can mimic the outcomes of standard linear regression models when used of 
low dimension p < N settings. The lasso simultaneously performs continuous shrinkage and automatic variable 
selection (Hepp, et al. 2016). As variable selection becomes more crucial in current data analysis, the lasso 
representation is becoming more appealing owing to its sparse representation. It is a penalized least squares 
method that disincentivizes the regression coefficients with an L1 penalty . The use of lasso as a primary 
variable selection strategy has grown in popularity in empirical finance in recent years (Sohrabi, and 
Movaghari. 2020). 
Although the lasso has proven to be effective in a variety of situations, it has some limitations: 
a) In the p > n situation, the lasso chooses at most n variables before saturating owing to the convex 

optimization problem. unless the bound on the L1 norm of a coefficient is less than a certain value, the 
lasso is not properly characterized. 

(b) If a collection of variables has a high pairwise correlation, the lasso will tend to pick only one variable from 
the group, regardless of which one it is. 

(c) It has been empirically shown that the lasso prediction performance is dominated by ridge regression in 
typical n>p cases when there are high correlations between variables. 

 
In some cases, scenarios (a) and (b) make the lasso an ineffective variable selection strategy. As a result, the 
lasso prediction power can be improved further. While the optimization parameter in it changed from zero 
to one, distinct regression parameters remain non-zero (Tarr, et al. 2015). When the tuning parameter is λ 
large enough in lasso, however, the L1 penalty has the effect of driving some of the coefficient estimations 
to be exactly equal to zero. Consequently, the lasso approach likewise produces sparse models. Moreover, it 
is computationally efficient, and it selects the true model as the sample size n increases. As the value of λ 
rises, the value of coefficients decreases, lowering the variance. This increase in λ is good because it merely 
reduces variance (thus avoiding overfitting) while preserving all of the data's critical features. 
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4.Cross- validation 
 
Cross-validation is perhaps the simplest and perhaps most extensively apply a method for estimating 
prediction error. This method directly calculates the excess sample error     Err= 𝐸 [𝐿 (𝑌, 𝑘∗(𝑋))] , which is 
the generalization. error when the method k*(X) is implemented to an independent test. sample from the 
joint. distribution of X and Y (Friedman, et al. 2001). It is one of the most extensively used resampling 
methods. 
The essential notion behind cross-validation is that part of the data is applied. to fit the model, while the rest 
is used to evaluate the model that has been built. V-fold cross-validation divides the data set into V equal or 
nearly equal pieces at random (Friedman, et al. 2001). V-fold cross-validation employs a portion of the 
available data to fit the model and a different portion to test it to fine-tune the problem. For the cross-
validation estimate of prediction error, we separated the data into V approximately equivalent parts: 

𝐶𝑉 =
1

𝑁
∑ 𝐿𝑁

𝑖=1 (𝒴𝑖  , ƒ̂−𝑉(𝑖)(𝑥𝑖   )).              (12) 

It is one of the most common resampling approaches, and it is getting a lot of attention and being used a lot 
for variable selection. Typical V values are 5 or 10, with V = N referred to as leave-one-out cross-validation. It 
should be noticed that methods such as recurrent cross-validation assist in the stabilization of findings by 
absorbing the impact of particularly bad splits, frequently resulting in slight model complexity reductions as 
well. (Hepp, et al. 2016). 
 
5. Probing 
 
A proposed method for determining the appropriate number of iterations in model-based boosting for 
variable selection that is inspired by probing, a technique commonly used in machine learning and microarray 
analysis. The main idea behind probing is to artificially inflate data using random noise variables, often known 
as probes or shadow variables. It is especially appealing for usage with more computationally costly boosting 
techniques because it doesn't require any resampling (Thomas, et al.2017). 
When the probing concept is applied to the sequential structure of model-based gradient variable selection 
through stability selection or cross-validation, one model fit is sufficient to uncover relevant variables, and no 
costly model refitting is necessary. Unlike classical cross-validation there is no need for any pre-specification 
such as the required to evaluate (mstop) for cross-validation; instead, probing focuses on optimal variable 
selection rather than the algorithm's prediction performance. Because this usually entails halting 
considerably sooner, the effect estimates for the selected variables are likely to be heavily regularized, making 
them unsuitable for forecasting. 
Probing for variable selection in model-based boosting )Algorithm 2(: 
(1) Create randomly shuffled images �̃�k for each of the k=1,. . . , p in the data set X variables xk such that �̃� ∈ 
S𝑥k , with Sxk denoting the symmetric group containing all n! 𝑥k possible permutations. 
(2) Establish a boosting model based on the megascopic data set,  𝑋= [𝑥1 ⋅ ⋅ ⋅ 𝑥p �̃�1 ⋅ ⋅ .�̃�𝑝], and start to begin 
repeats 𝑚 = 0. 
(3) If the first �̃�j is selected.  ( Algorithm1, step3) 
fit each base learner ℎk [𝑚](𝑥k) to a negative gradient vector u individually 
(4) Only the variables from the original data collection X should be returned. (Thomas, et al. 2017). 
 
Simulation 
We undertake benchmark simulation research to evaluate the performance of variable selection methods, in 
which we compare three strategies ( probing, lasso, cross validation) note their results, and simulate n data 
points from a multivariate. normal distribution for p variables. 
consider the following generate  𝑛 × 𝑝 , X matrix with standard normal distribution with mean=0, covariance 
identity matrix 𝜎; 𝑋∼N(0, 𝜎I). The used model which we depend on can be written as.y=Xβ+Ɛ. 
Where Y is a matrix n×1, X is a matrix with n×p, and β= is a regression coefficient   We repeat the experiment 
R= 500. To estimate the model using three methods (lasso, probing, and cross-validation). Where variables 
P={ 20, 100, 400},  sample size n={ 50, 150, 250},   and we choose S= (3, 7,9 ) (S) refer to significant variables 
in the model, which are the important variables. 
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Case 1 (for sparse) 

 
 

Table 1. Mean square error for methods when S= 9 

MSE P N 

0.8868 Lasso 20 50 

0.6529 Probing 

0.7169 C.V 

1.4058 Lasso 100 

0.2206 Probing 

0.6267 C.V 

1.3483 Lasso 400 

0.0347 Probing 

0.2358 C.V 

1.0578 Lasso 20 150 

0.8740 Probing 

0.8952 C.V 

1.0974 Lasso 100 

0.4687 Probing 

0.7484 C.V 

1.1963 Lasso 400 

0.1474 Probing 

0.4557 C.V 

1.0605 Lasso 20 250 

0.9202 Probing 

0.9325 C.V 

1.0983 Lasso 100 

0.6654 Probing 

0.8445 C.V 

1.1567 Lasso 400 

0.3519 Probing 

0.7088 C.V 

 
Shown in a table (1) are the results of comparing three methods ( lasso, probing, cross validation). The probing 
method is more stable, it had the lowest MSE value. So probing is the best method and it is performing 
comparatively better than lasso and cross validation. Note the probing method was decrease when the 
number of variables (p) increased for the stable number of sample sizes (N), and the MSE value of the probing 
method increased when the increasing number of (N) for the same number of p. In addition to the MSE value 
of cross validation (CV) method decrease for the increasing number of p for the same value of N, while the 
MSE value for the cross validation method increase for the same number of (p) and the increasing number of 
(N). 
In addition to the lasso which had the highest value of MSE. It increases when the number of variables (p) 
increases for the same numbers of sample size (N), and it is decreased when the number of (N) increases for 
the same number of (p). Therefore probing method was preferred because it had the smallest MSE value 
compared to the other two methods. 
 
Case 2 (for sparse) 
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Table 2. Mean square error for methods when S= 7 

MSE p N 

1.0807 Lasso 20 50 

0.6267 Probing 

0.6446 C.V 

1.1376 Lasso 100 

0.2926 Probing 

0.4087 C.V 

1.9091 Lasso 400 

0.0696 Probing 

0.7122 C.V 

1.0829 Lasso 20 150 

0.8636 Probing 

0.8931 C.V 

1.1129 Lasso 100 

0.4730 Probing 

0.7252 C.V 

1.2186 Lasso 400 

0.1312 Probing 

0.5674 C.V 

1.0631 Lasso 20 250 

0.9166 Probing 

0.9335 C.V 

1.1029 Lasso 100 

0.6574 Probing 

0.8631 C.V 

1.1710 Lasso 400 

0.3312 Probing 

0.7815 C.V 

 
Shown in Table (2) the results of comparing three methods ( lasso, probing, cross validation), that probing is 
the best method and it is performing comparatively better than lasso and cross validation because it had the 
lowest MSE value. We notice the value of probing decrease when the number of variables (p) increases for 
the same sample size (N) and the value of probing increase when the number of(  N) increase for the same 
number of variables( p). the MSE value of the cross validation (cv) method decreases for the increasing 
number of ( p) for the same value of (N). While the MSE value for the cross validation method increases for 
the same number of (p) and increasingly of (N). while the lasso method which has the highest MSE value 
increases when the number of variables P increase for the same numbers of sample size (N), and it is 
decreased when the number of (N) increases for the same number of (p). Therefore, it prefers probing 
because it had the smallest MSE value comparing the other two methods. 
 
Case 3 (for very sparse) 
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Table 3. Mean square error for methods when S = 3 
MSE P N 

1.1634 Lasso 20 50 

0.6095 Probing 

0.7354 C.V 

1.2917 Lasso 100 

0.0745 Probing 

0.4982 C.V 

1.3410 Lasso 400 

0.0380 Probing 

0.3664 C.V 

1.1121 Lasso 20 150 

0.8661 Probing 

0.9283 C.V 

1.1455 Lasso 100 

0.4555 Probing 

0.8536 C.V 

1.1975 Lasso 400 

0.1128 Probing 

0.7873 C.V 

1.0830 Lasso 20 250 

0.9177 Probing 

0.9535 C.V 

1.1093 Lasso 100 

0.6533 Probing 

0.9215 C.V 

1.1271 Lasso 400 

0.2880 Probing 

0.8817 C.V 

 
results of comparing three methods ( lasso, probing, cross validation). Probing had the lowest MSE value, so 
probing is the best method and it is performing comparatively better than lasso and cross validation. It 
appears that the MSE for the probing method decrease when the number of variables (p) increase for the 
stable sample size (N), and the MSE value of the probing method increase when the increasing number of (N) 
for the same number of (p). As well as the MSE value of the cross validation (CV) method decrease for the 
increasing number of (p) for the same value of (N). While the MSE value for the cross validation method 
increases for the same number of (p) and the increasing number of (N). In addition to the lasso which had the 
highest value of MSE. , it increases when the number of variables (p) increases for the same numbers of 
sample size(N), and it is decreased when the number of (N) increases for the same number of (p). Therefore 
probing method was preferred because it had the smallest MSE value comparing the other two methods. 
Furthermore, the value of MSE of the probing decreases as the number of variables increases for the same 
sample size, whereas the value of MSE of the probing increases as the sample size increases for the same 
number of variables. The value of MSE for cross-validation decreases as the (p) increases, and it increases 
when (N) increases. lasso was increased when variables(p) increase, and it decrease when (N). As a result, we 
conclude that increasing the number of variables ( p) improves the probing method's effectiveness. As a 
result, it prefers the probing method because it has the smallest MSE. 
 
Cardiovascular disease  data 
The proposed methods are useful for selection variables relevant and estimating parameters. The comparing 
between methods in terms of variable selection and accurate prediction. The performance methods are 
illustrated using  Data. These data were collected from a Nasiriyah Heart Center in Nasiriyah City, Iraq. 
 
They represent the number of people with Cardiovascular disease in Nasiriyah City from the first half of 2021. 
These data consist of 100 observations, 50 independent variables, and one response variable( Red Blood cell). 
The selected dataset Includes medical analyses and personal and social information about the study 
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population serving as covariates.  The Comparison depends on MSE as shown in table 4 below. the probing 
method is the best performance because it has the lowest value (33.8432). Thus, probing is the favorite 
method while lasso, cross-validation having sequentially (39.8250, 37.9251). 
 

Table 4. Mean square error for real data to n = 100, p= 50 
Methods MSE 

Lasso 39.8250 

Probing 33.8432 

C.V 37.9251 

 
All approaches rely on model-based boosting algorithms. the probing method is the best performance 
because it has the lowest value (33.84321); thus, probing is the favorite method while lasso, cross-validation 
having sequentially (39.82509, 37.92518). To evaluate the results provided by the three ' approaches’, (lasso, 
probing, and cross validation) to analysis the data to compare. Table 5 shows the total number of variables 
selected by each method along with the size of the intersection between the sets. 
 

Table 5. Total number of selected variables with size n = 100 and p = 50 for three variable selection 
techniques (probing, lasso, and cross-validation) on expression data sets. 

X Lasso Probing cross-validation 

X3  0.000131204  

X4  0.004330695  

X5  0.012762972  

X6  -0.005323548  

X8  0.00438118 3.233429e-04 

X9  -0.015856054  

X10  -0.003887381  

X11  -1.501926e-02 -3.262778e-03 

X12  -0.002617102  

X13  -0.00044107  

X14  -0.002794923  

X15  -0.007333231  

X18  0.000380884  

X20  -0.011486408  

X21  -0.018976889  

X22  0.010743992  

X23  0.021598493 5.735875e-03 

X24  -0.002150323  

X25 -0.02898 -0.029844264 -2.984426e-02 

X28  0.000674936 2.150974e-04 

X29  -0.001401589  

X30  -0.000290187  

X31 -0.01534 -0.022305315 -2.230531e-02 

X33  -1.800042e-03  

X34 0.022819 1.508288e-02 1.508288e-02 

X35  -3.933573e-04 -1.147322e-04 

X36  5.445344e-04 4.441935e-04 

X37 0.013315 0.019711519 1.971152e-02 

X39  0.00013824  

X40  -6.658958e-04  

X42  -0.001079428 -4.474280e-04 

X43  0.002782754  

X44  -0.009478171  

X46 -0.01603 -0.009425567 -9.425567e-03 

X47 -0.00162 -0.002223108 -9.385160e-04 

X49 0.045793 0.041523771 4.152377e-02 

X50  0.000838157  

X51  -1.001479e-02  
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For the suggested methods and the other methods in comparison, as indicated in the table (5). We can see 
that the lasso only chose the variables (x25, x31, x34, x37, x46, x47, x49). As seen in figure 2, the smallest 
"mean square error" correlates to a relatively big (λ), which may make it difficult to choose predictors. 
 

 
Figure 1. generating the beta sparse coefficient paths. 

 

 
Figure 2. Minimum "mean square error" corresponds to large  (λ) 

 
We want to choose the best coefficients that have small mean square error. While probing selected (x3, x4, 
x5, x6, x8, x9, x10, x11, x12, x13, x14, x15,x18,x20,x21,x22,x23,x24,x25, x28, x29, x30, x31, x33, x34, x35, x36, 
x37, x39, x40, x42, x43, x44, x46, x47, x49, x50, x51), as shown in figure 3. 

 
Figure 3. coefficients predicter with number iterations =500 using probing 
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The cross validation select (x8, x11, x19, x23, x25, x31, x28, x34, x35, x36, x37, x38, x42, x46, x47, x49), in 
table 5, and this explain in figures (4, 5). boosting error may increase with the number of iterations, when the 
data is noisy, as in the figure 4. 
 

 
Figure .4. 25-fold cross validation & MSE 

 

 
Figure 3. Coefficients predicter with number iterations =500 using  C.V 

 
It was clear as a consequence, the set of variables considered to be informative further shrinks in all three 
scenarios. boosting with probing leads to the largest set of selected variables in all methods. 
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Conclusion 
 
Three methods (lasso, probing, and cross-validation) for determining the best number of iterations for sparse 
and rapid variable. selection with model-based boosting were proposed. It was demonstrated that the 
methods are both prober and. useful strategies for variable selection through simulation and a real data 
analysis example. Unlike most model-based. boosting tuning processes, which rely on resampling to improve 
prediction accuracy. 
Relying on mean. Square error, the results show that the probing approach had the least MSE compared with 
other methods Consequently, it was concluded, through simulation and real data analysis example. That the 
probing method is the best approach because it can choose the largest number of selected. variables, which 
makes it is performance better for model estimation. 
 
References 
 
1. Bühlmann, P., Kalisch, M., & Meier, L. (2014). High-dimensional statistics with a view toward applications 

in biology. Annual Review of Statistics and Its Application, 1, 255-278. 
2. Clarke, R., Ressom, H. W., Wang, A., Xuan, J., Liu, M. C., Gehan, E. A., & Wang, Y. (2008). The properties of 

high-dimensional data spaces: implications for exploring gene and protein expression data. Nature reviews 
cancer, 8(1), 37-49. 

3. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New 
York: Springer series in statistics. 

4. Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New 
York: Springer series in statistics. 

5. Hepp, T., Schmid, M., Gefeller, O., Waldmann, E., & Mayr, A. (2016). Approaches to regularized regression–
a comparison between gradient boosting and the lasso. Methods of information in medicine, 55(05), 422-
430. 

6. Leng, C., Lin, Y., & Wahba, G. (2006). A note on the lasso and related procedures in model selection. 
Statistica Sinica, 1273-1284. 

7. Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). The evolution of boosting algorithms. Methods of 
information in medicine, 53(06), 419-427. 75 -  

8. Ridgeway, G. (1999). The state of boosting. Computing science and statistics, 172-181. 
9. Romero, R., Espinoza, J., Gotsch, F., Kusanovic, J. P., Friel, L. A., Erez, O., ... & Tromp, G. (2006). The use of 

high‐dimensional biology (genomics, transcriptomics, proteomics, and metabolomics) to understand the 
preterm parturition syndrome. BJOG: An International Journal of Obstetrics & Gynaecology, 113, 118-135. 

10. Sohrabi, N., & Movaghari, H. (2020). Reliable factors of Capital structure: Stability selection approach. The 
Quarterly Review of Economics and Finance, 77, 296-310. 

11. Tarr, G., Müller, S., & Welsh, A. (2015). mplot: An R package for graphical model stability and variable 
selection procedures. arXiv preprint arXiv:1509.07583. 

12. Thomas, J., Hepp, T., Mayr, A., & Bischl, B. (2017). Probing for sparse and fast variable selection with 
model-based boosting. Computational and mathematical methods in medicine, 2017. 

13. Thomas, J., Mayr, A., Bischl, B., Schmid, M., Smith, A., & Hofner, B. (2018). Gradient boosting for 
distributional regression: faster tuning and improved variable selection via noncyclical updates. Statistics 
and Computing, 28(3), 673-687. 

14. Xingyu, T. (2016). BOOSTING FOR PARTIALLY LINEAR ADDITIVE MODELS. 


