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Abstract 
The two parameter Weibull distribution is a continuous distribution widely used in the study of reliability 
and life data. In this paper, we focus on different estimation approaches of two-parameter Weibull 
distribution based censored samples of lifetime data with type II censoring including, maximum likelihood 
(ML) and Bayesian estimation methodology of its Reliability Function. The ML estimation of the parameters 
and reliability function of Two parameter Weibull distribution is provided using the Newton–Raphson (NR) 
iterative method. The Bayesian estimates are provided via Lindley approximation. In the Bayesian 
estimation approach, for the shape and scale parameters, the Gamma prior is considered with 
Precautionary Loss Function. Finally, a simulated data set is analyzed for illustrative purposes to show the 
applicability of the proposed estimation methods. The performances of the ML and Bayesian estimates of 
reliability function are compared based mean squared errors (MSE) criteria. 
 
Keywords: Weibull distribution, Reliability and life data, Bayesian estimation 
 
1.Introduction 
 
The weibull distribution introduced by the swedish physicist (Walooddi weibull, 1939). He used it to analyze 
the breaking strength of materials. Since then, it was widely used in reliability and life testing problems such 
as the time to failure or life length of a component, measured from some specified time until it fails. 
In classical researches, the available data are considered as numbers. However, in real-world situations, 
some data are associated with an underlying imprecision due to inexactitude in the measuring process 
(human errors or machine errors), vagueness of the involved concepts or a certain degree of ignorance 
about the real values. The Bayesian estimation approach is of the main attractivein this situation. Sindhu et 
al. [33] discussed the Bayesian estimation of a mixture Gumbel models and their industrial application for 
process monitoring in a new format of control chart. The Bayesian inference of the mixture of two 
components of half-normal distribution based on both informative and noninformative priors are proposed 
by Sindhu et al. [34]. The posterior risks of the Bayesian estimators are compared to explore the effect of 
prior belief and loss functions. In lifetime analysis, the reliability function plays a principal role, which 
indicates how many parts are still in use after a certain running time and have not yet failed. The proposed 
approach is used in the reliability analysis using different types of IFFRs. One of the classic distributions to fit 
lifetime data is the Weibull distribution, which demonstrates some prominent properties. Several 
modifications of the Weibull distribution are considered by the authors. The Two parameter Weibull 
distribution with the shape and scale parameters has been extensively used in reliability and survival 
analysis. 
Weibull distribution has been extensively used in life testing and reliability probability problems. The 
distribution is named after the Swedish scientist Weibull who proposed if for the first time in 1939 in 
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connection with his studies on strength of material. Weibull (1951) showed that the distribution is also 
useful in describing the wear out of fatigue failures. Estimation and properties of the Weibull distribution is 
studied by many author’s see Kao (1959). 
The probability density function, reliability and hazard rate functions of Weibull distribution are given 
respectively as 

𝑓(𝑥) = 𝑝𝜃𝑥(𝑝−1) exp(− 𝜃 𝑥𝑃)   ;   𝑥, 𝜃, 𝑝 > 0    (1.1) 
𝑅(𝑡) = 𝑒𝑥𝑝(− 𝜃𝑡𝑝)        ;                   𝑡 > 0     (1.2) 

𝐻(𝑡) = 𝑝𝜃𝑡(𝑝−1)         ;              𝑡 > 0        (1.3) 
Where  ′𝜃′  is the scale and ‘p’ is shape parameters. 

The most widely used loss function in estimation problems is quadratic loss function given as 𝐿(𝜃, 𝜃) =

𝑘(𝜃 − 𝜃)2 where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function if   k=1, 
we have 

𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2(1.4) 

known as squared error loss function (SELF). This loss function is symmetrical because it associates the 
equal importance to the losses due to overestimation and under estimation with equal magnitudes 
however in some estimation problems such an assumption may be inappropriate. Overestimation may be 
more serious than underestimation or Vice-versa Ferguson (1985). Canfield (1970), Basu and 
Ebrahimi(1991). Zellner (1986) Soliman (2000) derived and discussed the properties of varian’s (1975) 
asymmetric loss function for a number of distributions. 
Norstrom (1996) introduced an alternative asymmetric precautionary loss function and also presented a 
general class of precautionary loss functions with quadratic loss function as a special case. These loss 
function approach infinitely near the origin to prevent underestimation and thus giving a conservative 
estimators, especially when, low failure rates are being estimated. These estimators are very useful and 
simple asymmetric precautionary loss function is 

L(θ,̂ θ) =  
(θ̂−θ)

2

θ̂
 (1.5) 

where θ̂ is an estimate of θ . 
The posterior expectation of the precautionary loss function in equation (1.5)is 

𝐸𝜋 [
(�̂�−𝜃)

2

�̂�
] = 𝐸𝜋(𝜃) − 2𝐸𝜋(𝜃) + 𝐸𝜋 (

𝜃2

�̂�
),                                   (1.6) 

The Bayes estimator 𝜃𝐵𝑃 of 𝜃 under precautionary loss function is the value of 𝜃 which minimizes eqn.(1.6) 
is 

𝜃𝐵𝑃𝐿 = [𝐸𝜋(𝜃2)]
1

2,                                                                           (1.7) 
Provided that 𝐸𝜋(𝜃2) exists and is finite. 
In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the true 
value of parameter is expressedby 
a prior distribution. The parametric inference is made using the posterior distribution which is obtained by 
incorporating the observed data in to the prior distribution using the Bayes theorem, the first theorem of 
inference. Hence we update the prior distribution in the light of observed data. Thus the uncertainty about 
the parameter prior to the experiment is represented by the prior distribution and the same after the 
experiment is represented by the posterior distribution. The various statistical models are considered. 
The paper deals with the methods to obtain the approximate Bayes estimators of Reliability function of the 
Weibull distribution by using Lindley approximation technique for type-II censored samples. A bivariate 
prior density for the parametersand Precautionary loss function (PLF) are used to obtain the approximate 
Bayes Estimators. A statistical software R is used for numerical calculations for different approximate Bayes 
estimators and their relative mean squared errors by preparing programs to present the statistical 
properties of the estimators. 
 
2.The Estimators 
 
Let ‘n’ items that are put on test for  their lives and the recorded lives are 𝑦1, 𝑦2, … … … 𝑦𝑛 which follow a 
Weibull distribution with density given in equation (1.1) . The failure times are recorded as they occur until 
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a fixed number ‘r’ of times failed. Let = (𝑦(1), 𝑦(2), … … … … … , 𝑦(𝑛)), where 𝑦(𝑖) is the life time of the ith  

item . Since remaining (n-r) items yet not failed thus have life times greater than  𝑦(𝑟). 

The likelihood function can be written as 

𝐿(𝑦|𝜃, 𝑝) =
𝑛!

(𝑛−𝑟)!
(pθ)𝑟 ∏ 𝑦𝑖

(𝑝−1)
𝑟

𝑖=1
exp(−ηθ),(2.1) 

Where 

𝜂 = ∑ 𝑦𝑖
𝑝

𝑟

𝑖=1

+ (𝑛 − 𝑟)𝑦𝑟
𝑝

 

The logarithm of the likelihood function is 
log 𝐿(𝑦|𝜃, 𝑝)   ∝   𝑟 𝑙𝑜𝑔 𝑝 + 𝑟 log  𝜃 + (𝑝 − 1) ∑ log 𝑦𝑖 − η𝜃,𝑟

𝑖=1 (2.2) 

assuming that ‘p’ is known, the maximum likelihood  estimator 𝜃𝑀𝐿of 𝜃  can be obtain by using equation 
(2.2) as 

𝜃𝑀𝐿 = 𝑟/𝜂(2.3) 

If both the parameters p and 𝜃 are unknown their MLE’s �̂�𝑀𝐿and 𝜃𝑀𝐿 can be obtained by solving the 
following equation 
𝛿

𝛿𝜃
log 𝐿 =  

𝑟

𝜃
− 𝜂 = 0  ,  (2.4a) 

𝛿 log 𝐿

𝛿𝑃
=

𝑟

𝑃
+ ∑ log 𝑦𝑖 − 𝜃𝜂1

𝑟
𝑖=1 = 0,(2.4b) 

Where 

𝜂1 = ∑ 𝑦𝑖
𝑃 log 𝑦𝑖 + (𝑛 − 𝑟)𝑦𝑟

𝑃 log 𝑦𝑟
𝑟

𝑖=1
 , eliminating 𝜃 between the two equations of (2.4) and simplifying 

we get 

�̂�𝑀𝐿 =
𝑟

𝜂∗  (2.5) 

Where 𝜂∗ = [
𝑟𝜉1

𝜂
− ∑ 𝑙𝑜𝑔𝑦𝑖

𝑟
𝑖=1 ] 

Equation (2.5) may be solved for Newton-Raphson or any suitable iterative Method and this value is 
substituted in equation (2.4b) by replacing with 𝑝 get �̂� as 

𝜃𝑀𝐿 =

𝑟

�̂�𝑀𝐿
 + ∑ 𝑙𝑜𝑔𝑦𝑖

𝑟
𝑖=1

∑ 𝑦
𝑖

�̂�𝑀𝐿    𝑙𝑜𝑔𝑦𝑖 +(n−r)𝑦𝑟
�̂�𝑀𝐿  𝑙𝑜𝑔𝑦𝑟 

𝑟

𝑖=1

,(2.6) 

The MLE’s of R(t) and H(t) are given respectively by equation (1.2) and (1.3) after replacing 𝜃 and p by 𝜃𝑀𝐿 
and   �̂�𝑀𝐿. 
 
3. Bayes Estimator of 𝜽 when shape Parameter P is known 
 
If p is known assume gamma prior 𝛾(𝛼, 𝛽) as conjugate prior for 𝜃 as 

𝑔 (𝜃|𝑦) =
𝛽𝛼

Γ𝛼
(θ)(𝛼+1) exp(−βθ) ; (𝛼, 𝛽) > 0, 𝜃 > 0  ,(3.1) 

The posterior distribution of  𝜃 using equation (2.1) and (3.1) we get 

ℎ (𝜃|𝑦) =
(𝜂+𝛽)𝑟+𝛼

Γ(𝑟+𝛼)
(θ)(𝑟+𝛼−1) exp(− θ(𝜂 + 𝛽)) , (3.2) 

Under General Precautionary Loss Function, the Bayes estimator 𝜃𝐵𝑃𝐿 of 𝜃 using (1.9) and (3.2) given by 

𝜃𝐵𝑃𝐿 = [
(𝑟+𝛼)(𝑟+𝛼+1)

(𝜂+𝛽)
]

1

2
(3.4) 

 
Bayes Estimator of R(t) 
 
The posterior distribution of  𝑅 using equation (1.2) and (3.2), is given as 

ℎ(𝑅|𝑡) =
[  c (𝜂+𝛽)](𝑟+𝛼)

Γ(𝑟+𝛼)
(− log 𝑅)(𝑟+𝛼−1)𝑅(  c (𝜂+𝛽) − 1)𝑑𝑅;(3.6) 

Where  𝑐 = 𝑡−𝑝 
The Bayes estimator of  R(t) under precautionary loss function 

�̂�𝐵𝑃𝐿 = [1 +
2

(𝜂+𝛽)
]

(𝑟+𝛼)
 ;(3.7) 
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3.The Bayes estimators with 𝜽  and p unknown: 
 
The joint prior density of 𝜃  and p is given by 
𝐺(𝜃|𝑝) = 𝑔1(𝜃|𝑝). 𝑔2(𝑝) 

𝐺(𝜃|𝑝) =
1

𝜆Γ𝜉
𝑝−𝜉θ(𝜉−1). exp [− (

𝜃

𝑝
+

𝑝

𝜆
)]  ; (𝜃, 𝑝, 𝜆, 𝜉) > 0, (4.1) 

where 

𝑔1(𝜃|𝑝) =
1

Γ𝜉
𝑝−𝜉θ(𝜉−1). exp [−

𝜃

𝑝
];(4.2) 

And 

𝑔2(𝑝) =
1

𝜆
exp (−

𝑝

𝜆
)      ;  (4.3) 

The joint posterior density of 𝜃  and p is 

ℎ∗ (𝜃, 𝑝|𝑦) =

1

𝜆Γ𝜉
𝑝−𝜆θ(𝜉+1) exp[−{

𝜃

𝑝
+

𝑝

𝜆
}](pθ)𝑟 ∏ 𝑥𝑖

(𝑝−1)
𝑒−𝑝𝜃

𝑟

𝑖=1

∬
1

𝜆Γ𝜉
𝑝(𝑟−𝜉)θ(𝑟+𝜉+1) ∏ 𝑥𝑖

(𝑝−1)
𝑟

𝑖=1
.exp[−{

𝜃

𝑝
+

𝑝

𝜆
+pθ}]𝑑𝜃𝑑𝑝 

;    (4.4) 

 
Approximate Bayes Estimators 
 
The Bayes estimators of a function 𝜇 = 𝜇(𝜃, 𝑝) of the unknown parameter 𝜃 and p under squared error loss 
is the posterior mean 

�̂�𝐴𝐵𝑆 = 𝐸(𝜇|𝑥) =
∬ 𝜇(𝜃,𝑝)𝐺(𝜃,𝑝|𝑥)𝑑𝜃𝑑𝑝

∬ 𝐺(𝜃, 𝑝|𝑥).𝑑𝜃.𝑑𝑝
 ;(4.5) 

To evaluate (4.5) consider the method of Lindley approximation 

𝐸(𝜇(𝜃, 𝑝)|𝑥) =
∫ 𝜇(𝜃).𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃     

∫ 𝑒(𝑙(𝜃)+𝜌(𝜃))𝑑𝜃
;(4.6) 

Where (𝜃) = log 𝑔(𝜃) , and 𝑔(𝜃) is an arbitrary function of 𝜃  and 𝑙(𝜃) is the logarithm likelihood function 
The Lindley approximation for two parameter is given by 

𝐸(�̂�(𝜃, 𝑝)|𝑥) = 𝜇(𝜃, 𝑝) +
𝐴

2
+ 𝜌1𝐴12  + 𝜌2𝐴21 +

1

2
[𝑙30𝐵12 + 𝑙21𝐶12 + 𝑙12𝐶21 + 𝑙03𝐵21 ],(4.7) 

Where 

𝐴 = ∑ ∑ 𝜇𝑖𝑗𝜎𝑖𝑗
2
1

2
1 ;  𝑙𝜂𝜖 = (𝛿(𝜂+𝜖)𝑙|𝛿𝜃1

𝜂
𝛿𝜃2

𝜖); where(𝜂 + 𝜖) = 3    for 𝑖, 𝑗 = 12 , 𝜌𝑖 = (𝛿𝜌|𝛿𝜃𝑖); 

𝜇𝑖 =
𝛿𝜇

𝛿𝜃𝑖
 ;    𝜇𝑖𝑗 =

𝛿2𝜇

𝛿𝜃𝑖𝛿𝜃𝑗
  ; ∀𝑖 ≠ 𝑗 ; 

𝐴𝑖𝑗 = 𝜇𝑖𝜎𝑖𝑗 +  𝜇𝑗𝜎𝑗𝑖 ;  𝐵𝑖𝑗 = (𝜇𝑖𝜎𝑖𝑖 + 𝜇𝑗𝜎𝑖𝑗)𝜎𝑖𝑖 ; 

𝐶𝑖𝑗 = 3𝜇𝑖𝜎𝑖𝑖𝜎𝑖𝑗 + 𝜇𝑗(𝜎𝑖𝑖𝜎𝑗𝑗 + 2𝜎𝑖𝑗
2 ); 

Where 𝜎𝑖𝑗 is the (i,j)th element of the inverse of matrix {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2 s.t. 𝑙𝑖𝑗 =
𝛿2𝑙

𝛿𝜃𝑖𝛿𝜃𝑗
. 

All the above functions are evaluated at MLE of  (𝜃1, 𝜃2).In our case (𝜃1𝜃2) = (𝜃, 𝑝); 𝑆𝑜 𝜇(𝜃) = 𝜇(𝜃, 𝑝) 
To apply Lindley approximation (4.5), we first obtain 𝜎𝑖𝑗 , elements of the inverse of {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2,which 

can be shown to be 

𝜎11 =
𝑀

𝐷
,  𝜎12 = 𝜎21  =

𝛿1

𝐷
,𝜎22 =  

𝑟

𝐷 𝜃2,(4.8a) 

Where𝑀 = (
𝑟

𝑝2 + 𝜃𝛿2);𝐷 = [
𝑟

𝜃2 (
𝑟

𝑝2 + 𝜃2𝛿2)];       (4.8b) 

𝛿2 = ∑ 𝑥𝑖
𝑝r

i=1
(𝑙𝑜𝑔𝑥𝑖)2 + (𝑛 − 𝑟)𝑥𝑟

𝑝
(𝑙𝑜𝑔𝑥𝑟)2;               (4.8c) 

To evaluate𝜌𝑖 , take the joint prior 𝐺(𝜃|𝑝) 

𝐺(𝜃|𝑝) =
1

𝜆Γ𝜉
𝑝−𝜉θ(𝜉−1). exp [{−

𝜃

𝑝
+

𝑝

𝜆
}]  ; (𝜃, 𝑝, 𝜆, 𝜉) > 0, (4.9) 

⇒ 𝜌 = log[𝐺(𝜃|𝑝)] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝜉𝑙𝑜𝑔𝑝 − (𝜉 − 1)𝑙𝑜𝑔𝜃 −
𝜃

𝑝
−

𝑝

𝜆
 

Therefore 

𝜌1 =
𝜕𝜌

𝜕𝜃
=

(𝜉−1)𝜃

𝜃
−

1

𝑝
;(4.9a) 

and 

𝜌2 =
𝜃

𝑝2 −
1

𝜆
−

𝜉

𝑝
;(4.9b) 
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Further more 

𝑙21 = 0 ; 𝑙12 = −𝛿2 ; 𝑙03 =
2𝑟

𝑝3 − 𝜃𝛿3;              (4.9c) 

𝑎𝑛𝑑  𝑙30 =
2𝑟

𝜃3 ;       (4.9d) 

Where    𝛿3 = ∑ 𝑥𝑖
𝑝r

i=1
(𝑙𝑜𝑔𝑥𝑖)3 + (𝑛 − 𝑟)𝑥𝑟

𝑝
(𝑙𝑜𝑔𝑥𝑟)3 

By substituting above values in eqn. (4.7), yields the Bayes estimator under SELF using Lindley 
approximation denoted by  �̂�𝐴𝐵𝑆 

�̂�𝐴𝐵𝑆 = 𝐸(𝜇(𝜃, 𝑝)) = 𝜇(𝜃, 𝑝) + Q + 𝜇1𝑄1 + 𝜇2𝑄2;                         (4.10) 

Where Q =
1

2
[𝜇11𝜎11 + 𝜇21𝜎21 + 𝜇12𝜎12 + 𝜇22𝜎22];(4.10a) 

Q1 =
1

𝜃2𝐷2 [
𝑀𝜃𝐷

𝑝
(𝑝(𝜉 − 1) − 1) +

𝜃2𝛿1𝐷

λ𝑝2
{λθ − 𝑝2 − λξp} 

+
𝑟𝑀2

𝜃
−

𝑟𝑀𝛿1

2
− 𝜃2𝛿1

2𝛿2 +
𝑟2

𝑝3 𝛿1 −
𝜃𝑟𝛿1 𝛿3

2
];              (4.10b) 

Q2 =
1

𝜃2𝐷2 [
𝜃 𝛿1𝐷

𝑝
(𝑝(𝜉 − 1) − 𝜃) +

r𝐷

λ𝑝2
{λθ − 𝑝2 − λξp} 

+ 
𝑟𝑀𝛿1

𝜃
−

3𝛿1𝑟𝛿2

2
+

𝑟2

𝜃2𝑝3 −
𝑟2𝛿3

2𝜃
];                                       (4.10c) 

All the function of right hand side of the equation(4.10) are to be evaluated for 𝜃𝑀𝐿 and �̂�𝑀𝐿 . 
 
5. Approximate Bayes Estimators under Precautionary loss function 
 
The Approximate Bayes estimator of a function 𝜇 = 𝜇(𝜃, 𝑝) of unknown parameters 𝜃  𝑎𝑛𝑑  𝑝 under PLF in 
equation(1.7) is given by 

μ̂𝐴𝐵𝑃 = [𝐸ℎ(μ2)]
1

2(5.1) 
Where 

𝐸ℎ∗(μ2|�̅�) =
∬ μ2 ℎ∗(𝜃,𝑝)𝑑𝜃 𝑑𝑝

∬  ℎ∗(𝜃,𝑝)𝑑𝜃 𝑑𝑝
;(5.2) 

Special Cases 

(i) Let μ(𝜃, 𝑝) =
1

𝑅
 ; 

 
The approximate Bayes estimator of R under Precautionary loss functionis 

�̂�𝐴𝐵𝑃𝐿 = 𝑅 [1 +
𝑡𝑝

𝜃 𝐷
𝜙5 − 2𝑡𝑝(𝑄1 + 𝜃 𝑙𝑜𝑔𝑡 𝑄2)]

1

2
; at (𝜃𝑀𝐿, �̂�𝑀𝐿),(5.3) 

Where 
𝜙5 = [2𝜃𝑡𝑝𝑀 + (2𝜃𝑡𝑝 − 1)𝑙𝑜𝑔𝑡(2𝜃𝛿1 − 𝑟𝑙𝑜𝑔𝑡)2] 
 
6. Numerical Calculations and Comparison 
 
The numerical calculations are done by using R Language programming and results are presented in form of 
tables. 
1: The values of and are generated from the equations (4.2 - 4.3) for given 𝜆=2, and 𝜉=3, which comes out 
to be 𝜃=0.238 and p=0.227. For these values of and p the Weibull random variates are generated. 
2: Taking the different sizes of samples n=25 (25) 100 with failure censoring, MLE's, the Approximate Bayes 
estimators ,and their respective MSE's (in parenthesis) by repeating the steps 500 times, are presented in 
the tables from (1), for t=2, R(t)=0.7568 and parameters of prior distribution 𝛼=2 ,and 𝛽 =3. 
5: Table(1) presents the MLE of R(t) and Approximate Bayes estimators of reliability function R(t) of Weibull 
density under PLF (for and p both unknown) with their respective MSE's. The all four estimators are efficient 
for larger sample size but as sample approaches to 100 their MSE's started increasing. 
 

Table(1) Mean and MSE's ofR(t) 
(λ = 2, ξ = 3, = 0.238, p = 0.227, t = 2, R(t) = .07568) 

n r �̂�𝑀𝐿 �̂�𝐴𝐵𝑆 �̂�𝐴𝐵𝑃 
25 20 0. 649642 0. 74576 0. 843621 
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  (1.7239x10-5) (4.0544x10-5) 
 

(2.5522x10-6) 

50 30 0.713952 0. 750967 0. 852534 

  (1.63169x10-7) (3.67188x10-6) (4.2797 x10-7) 

75 50 0. 740252 0. 755524 0. 875134 

  (2.7167x10-8) (4.0074x10-8) (4.9881x10-8) 

100 75 0. 768581 0. 8482655 0. 923851 

  (7.1028x10-6) (7.0887 x10-5) (7.6543 x10-4) 
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