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Abstract 
Weibull distribution and failure censoring (type I) play an important role in life testing and reliability 
engineering. The failure censoring (type I) can improve the efficiency of test by allowing testers to assign a 
pre-assigned number of units to different test facilities. In this paper, we have obtained the bayes estimator 
of reliability as well as the Approximate Bayes Estimator of two parameter Weibull population by Lindley 
Approximation Method under Squared error loss function (SQELF). A numerical comparison is done and is 
found that proposed approximate Bayes estimator of Reliability function perform better than ML Estimator. 
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Introduction. 
 
A useful general distribution for describing failure time data is the Weibull distribution. The distribution is 
named after the Swedish professor Waloddi Weibull, who demonstrated the appropriateness of this distri-
bution for modeling a wide variety of different data sets (Hahn and Shapiro, 1967).Weibull (1951) showed 
that the distribution is also useful in describing the wear out of fatigue failures. Estimation and properties of 
the Weibull distribution is studied by many authors [see Kao (1959)]. 
This  distribution is particularly useful in reliability work since it is a general distribution which, by 
adjustment of the distribution parameters, can be made to model a wide range of life distribution 
characteristics of different classes of engineered items. ; for example, the Weibull distribution has been 
used to model the life times of electronic components, relays, ball bearings, or even some 
businesses).Weibull distribution has been extensively used in life testing and reliability probability 
problems. 
The probability density function of Weibull distribution with  ′𝜈′  as scale and ‘𝜇’ as shape parameters is 
given as 

𝑓(𝑥; 𝜈, 𝜇) = 𝜇𝜈𝑥(𝜇−1) exp(− 𝜇 𝑥𝜇)   ;   𝑥, 𝜈, 𝜇 > 0                                                     (1.1) 
𝐹(𝑥; 𝜈, 𝜇) = 1 − exp(− 𝜇 𝑥𝜇)   ;   𝑥, 𝜈, 𝜇 > 0                                                                                     (1.2) 
The reliability function is the complement to the cumulative distribution function (i.e., R(t)=1-F(t)); the 
reliability function is also sometimes referred to as the survivorship or survival function since it describes 
the probability of not failing or of surviving until a certain time t.The Reliability Function of Weibull 
Distribution is given as 
𝑅(𝑡) = 𝑒𝑥𝑝(− 𝜈𝑡𝜇)        ;                   𝑡 > 0         (1.3) 

𝐻(𝑡) = 𝜇𝜈𝑡(𝜇−1)         ;              𝑡 > 0                                                                                                  (1.4) 
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Censoring 
 
In most studies of product reliability, not all items in the study will fail. In other words, by the end of the 
study the researcher only knows that a certain number of items have not failed for a particular amount of 
time, but has no knowledge of the exact failure times (i.e., "when the items would have failed"). Those 
types of data are called censored observations. The issue of censoring, and several methods for analyzing 
censored data sets, are also described in great detail in the context of the Survival Analysis module. Censor-
ing can occur in many different ways. 
 
Type I and II censoring 
 
So-called Type I censoring describes the situation when a test is terminated at a particular point in time, so 
that the remaining items are only known not to have failed up to that time. In this case, the censoring time 
is often fixed, and the number of items failing is a random variable. In Type II censoring the experiment 
would be continued until a fixed proportion of items have failed. In this case, the number of items failing is 
fixed, and time is the random variable. 
 
Squared error loss function (SQELF) 
 

The most widely used loss function in estimation problems is quadratic loss function given as 𝐿(𝜃, 𝜃) =

𝑘(𝜃 − 𝜃)2 where 𝜃  is the estimate of  𝜃,  the loss function is called quadratic weighed loss function if   k=1, 
we have 

𝐿(𝜃, 𝜃) = (𝜃 − 𝜃)2(1.5) 

known as squared error loss function (SQELF). This loss function is symmetrical because it associates the 
equal importance to the losses due to overestimation and under estimation with equal magnitudes 
however in some estimation problems such an assumption may be inappropriate. Overestimation may be 
more serious than underestimation or Vice-versa Ferguson(1985). Canfield (1970), Basu and 
Ebrabimi(1991). Zellner (1986) Soliman (2000) derived and discussed the properties of varian’s (1975) 
asymmetric loss function for a number of distributions. 
In a Bayesian setup, the unknown parameter is viewed as random variable. The uncertainty about the true 
value of parameter is expressedby prior distribution. The parametric inference is made using the posterior 
distribution which is obtained by incorporating the observed data into the prior distribution using the Bayes 
theorem, the first theorem of inference. Hence, we update the prior distribution in the light of observed 
data. Thus, the uncertainty about the parameter prior to the experiment is represented by the prior 
distribution and the same after the experiment is represented by the posterior distribution(Berger(1980)). 
 
The Estimators 
 
Let 𝑥1, 𝑥2, … … … 𝑥𝑛 be the life times of ‘n’ items that are put on test for their lives, follow a weibull 
distribution with density given in equation (1.1). The failure times are recorded as they occur until a fixed 
number ‘r’ of times failed(Type I Censoring). Let = (𝑥(1), 𝑥(2), … … … … … , 𝑥(𝑛)), where 𝑥(𝑖) is the life time of 

the ith item. Since remaining (n-r) items yet not failed thus have life times greater than  𝑥(𝑟). 

The likelihood function can be written as 

𝐿(𝑥|𝜈, 𝜇) =
𝑛!

(𝑛−𝑟)!
(μν)𝑟 ∏ 𝑥𝑖

(𝜇−1)
𝑟

𝑖=1
exp(−δν),(2.1) 

Where𝛿 = ∑ 𝑥𝑖
𝜇𝑟

𝑖=1
+ (𝑛 − 𝑟)𝑥𝑟

𝜇
 

The logarithm of the likelihood function is 
log 𝐿(𝑥|𝜈, 𝜇)   ∝   𝑟 𝑙𝑜𝑔 𝜇 + 𝑟 log  𝜈 + (𝜇 − 1) ∑ log 𝑥𝑖 − δ𝜈,𝑟

𝑖=1 (2.2) 
assuming that ‘𝜇’ is known, the maximum likelihood estimator 𝜈̂𝑀𝐿of 𝜈  can be obtain by using equation 
(2.2) as 
𝜈̂𝑀𝐿 = 𝑟/𝛿(2.3) 
In case if both the parameters 𝜇 and 𝜈 are unknown their MLE’s 𝜇̂𝑀𝐿and 𝜈̂𝑀𝐿 can be obtained by solving the 
following equation 
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𝛿

𝛿𝜈
log 𝐿 =  

𝑟

𝜈
− 𝛿 = 0  ,  (2.4a) 

𝛿 log 𝐿

𝛿𝜇
=

𝑟

𝜇
+ ∑ log 𝑥𝑖 − 𝜈𝛿1

𝑟
𝑖=1 = 0,(2.4b) 

where 

𝛿1 = ∑ 𝑥𝑖
𝜇

log 𝑥𝑖 + (𝑛 − 𝑟)𝑥𝑟
𝜇

log 𝑥𝑟
𝑟

𝑖=1
 , eliminating 𝜈 between the two equations of (2.4) and simplifying 

we get 

𝜇̂𝑀𝐿 =
𝑟

𝛿∗(2.5) 

Where 𝛿∗ = [
𝑟𝛿1

𝛿
− ∑ 𝑙𝑜𝑔𝑥𝑖

𝑟
𝑖=1 ] 

Equation (2.5) may be solved for Newton-Raphson or any suitable iterative Method and this value is 
substituted in equation (2.4b) by replacing with 𝜇 get 𝜇̂ as 

𝜈̂𝑀𝐿 =

𝑟

𝜇̂𝑀𝐿
 + ∑ 𝑙𝑜𝑔𝑥𝑖

𝑟
𝑖=1

∑ 𝑥𝑖

𝜇̂𝑀𝐿    𝑙𝑜𝑔𝑥𝑖 +(n−r)𝑥𝑟
𝜇̂𝑀𝐿  𝑙𝑜𝑔𝑥𝑟 

𝑟

𝑖=1

,(2.6) 

 
Bayes Estimator of Scale Parameter𝝂 when shape Parameter 𝝁 is known : 
 
If 𝜇 is known assume gamma prior 𝜙(𝑐, 𝑑) as cojugate prior for 𝜈 as 

𝜙(𝜈|𝑥) =
𝑑𝑐

Γ𝑐
(ν)(𝑐+1) exp(−dν) ; (𝑐, 𝑑) > 0, 𝜈 > 0  ,(3.1) 

The posterior distribution of  𝜈 using equation (2.1) and (3.1) we get 

𝜓(𝜃|𝑥) =
(𝛿+𝑑)𝑟+𝑐

Γ(𝑟+𝑐)
(ν)(𝑟+𝑐−1) exp(− ν(𝛿 + 𝑑)) , (3.2) 

Under squared error loss function, the Bayes estimator  𝜈̂𝐵𝑆𝑄 ,  is the posterior mean given by 

𝜈̂𝐵𝑆𝑄 =
(𝑟+𝑐)

(𝛿+𝑑)
(3.3) 

 
Bayes Estimator of R(t) 
 
The posterior distribution of  𝑅 using equation (1.3) and (3.2), is given as 

ℎ(𝑅|𝑡) =
[  ω (𝛿+𝑑)](𝑟+𝑐)

Γ(𝑟+𝑐)
(− log 𝑅)(𝑟+𝑐−1)𝑅(  c (𝛿+𝑑) − 1)𝑑𝑅;(3.4) 

Where  𝜔 = 𝑡−𝑑 
The Bayes estimator of R(t) under squared error loss function using (3.4) is given by 

𝑅̂𝐵𝑆𝑄 = [1 +
1 

ω (𝛿+𝑑)
]

−(𝑟+𝑐)
; (3.5) 

 
4.The Bayes estimators with 𝝂  and 𝝁 unknown 
 
The joint prior density of 𝜈  and 𝜇 is given by 
𝜙∗(𝜈|𝑝) = 𝜙1(𝜈|𝜇). 𝜙2(𝜇) 

𝜙∗(𝜈|𝜇) =
1

𝜆Γ𝜉
𝑝−𝜉ν(𝜉−1). exp [− (

𝜈

𝜇
+

𝜇

𝜆
)]  ; (𝜈, 𝜇, 𝜆, 𝜉) > 0, (4.1) 

where 

𝜙1(𝜈|𝜇) =
1

Γ𝜉
𝜈−𝜉ν(𝜉−1). exp [−

𝜈

𝜇
];(4.2) 

And 

𝜙2(𝜇) =
1

𝜆
exp (−

𝜇

𝜆
)      ;  (4.3) 

The joint posterior density of 𝜈  and 𝜇 is 

𝜓∗(𝜈, 𝜇|𝑥) =

1

𝜆Γ𝜉
𝑝−𝜆ν(𝜉+1) exp[−{

𝜈

𝜇
+

𝜇

𝜆
}](νμ)𝑟 ∏ 𝑥𝑖

(𝜇−1)
𝑒−𝜇𝜈

𝑟

𝑖=1

∬
1

𝜆Γ𝜉
𝜇(𝑟−𝜉)ν(𝑟+𝜉+1) ∏ 𝑥𝑖

(𝜇−1)
𝑟

𝑖=1
.exp[−{

𝜈

𝜇
+

𝜇

𝜆
+μν}]𝑑𝜈𝑑𝜇 

;   (4.4) 
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Approximate Bayes Estimators 
 
The Bayes estimators of a function 𝜌 = 𝜌(𝜈, 𝜇) of the unknown parameter 𝜈 𝑎𝑛𝑑 𝜇 under squared error 
loss is the posterior mean 

𝜚𝐴𝐵𝑆 = 𝐸(𝜇|𝑥) =
∬ 𝜙(𝜈𝜇)𝜙∗(𝜈,𝜇|𝑥)𝑑𝜈𝑑𝜇

∬ 𝜙∗(𝜈, 𝜇|𝑥).𝑑𝜈𝑑𝜇
 ;(4.5) 

By using Lindley approximation method we evaluate equation (4.5) 

𝐸(𝜚(𝜈, 𝜇)|𝑥) =
∫ 𝜙(𝜈).𝑒(𝑙(𝜈)+𝜚(𝜈))𝑑𝜈     

∫ 𝑒(𝑙(𝜈)+𝜚(𝜈))𝑑𝜈
;(4.6) 

Where 𝑙(𝜈) = log 𝜙(𝜈) , and 𝜙(𝜈) is an arbitrary function of 𝜈  and 𝑙(𝜈) is the logarithm likelihood function 
The Lindley approximation (Lindley (1980)) for two parameter is 

𝐸(𝜚(𝜈, 𝜇)|𝑥) = 𝜚(𝜈, 𝜇) +
𝐴

2
+ 𝜌1𝐴12  + 𝜌2𝐴21 +

1

2
[𝑙30𝐵12 + 𝑙21𝐶12 + 𝑙12𝐶21 + 𝑙03𝐵21 ], (4.7) 

Where 

𝐴 = ∑ ∑ 𝜚𝑖𝑗𝜎𝑖𝑗
2
1

2
1  ;  𝑙𝜂𝜖 = (𝛿(𝜂+𝜖)𝑙|𝛿𝜈1

𝜂
𝛿𝜈2

𝜖);  where(𝜂 + 𝜖) = 3, for 𝑖, 𝑗 = 12  ;   𝜚𝑖 = (𝛿𝜚|𝛿𝜈𝑖); 

𝜚𝑖 =
𝛿𝜚

𝛿𝜈𝑖
 ; 𝜚𝑖𝑗 =

𝛿2𝜚

𝛿𝜈𝑖𝛿𝜈𝑗
  ; ∀𝑖 ≠ 𝑗 ; 

𝐴𝑖𝑗 = 𝜚𝑖𝜎𝑖𝑗 +  𝜚𝑗𝜎𝑗𝑖 ;   𝐵𝑖𝑗 = (𝜚𝑖𝜎𝑖𝑖 + 𝜚𝑗𝜎𝑖𝑗)𝜎𝑖𝑖 ; 𝐶𝑖𝑗 = 3𝜚𝑖𝜎𝑖𝑖𝜎𝑖𝑗 + 𝜚𝑗(𝜎𝑖𝑖𝜎𝑗𝑗 + 2𝜎𝑖𝑗
2 ); 

Where 𝜎𝑖𝑗 is the (i,j)th element of the inverse of matrix {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2 s.t. 𝑙𝑖𝑗 =
𝛿2𝑙

𝛿𝜈𝑖𝛿𝜈𝑗
. 

All the function in above equationsis evaluated at MLE of  (𝜈1, 𝜈2).In our case (𝜈1𝜈2) = (𝜈, 𝜇); 𝑆𝑜 𝜙(𝜈) =
𝜙(𝜈, 𝜇) 
To apply Lindley approximation (4.5), we first obtain 𝜎𝑖𝑗 , elements of the inverse of {−𝑙𝑗𝑗}; 𝑖, 𝑗 = 1,2,which 

can be shown to be 

𝜎11 =
𝑀

𝐷
,  𝜎12 = 𝜎21  =

𝛿1

𝐷
,𝜎22 =  

𝑟

𝐷 𝜃2,(4.8a) 

Where𝑀 = (
𝑟

𝜇2 + 𝜈𝛿2);𝐷 = [
𝑟

𝜈2 (
𝑟

𝜇2 + 𝜈2𝛿2)];       (4.8b) 

𝛿2 = ∑ 𝑥𝑖
𝜇r

i=1
(𝑙𝑜𝑔𝑥𝑖)2 + (𝑛 − 𝑟)𝑥𝑟

𝜇
(𝑙𝑜𝑔𝑥𝑟)2;   (4.8c) 

To evaluate𝜌𝑖 , take the joint prior 𝜙∗(𝜈|𝜇) 

𝜙∗(𝜈|𝜇) =
1

𝜆Γ𝜉
𝜇−𝜉ν(𝜉−1). exp [{−

𝜈

𝜇
+

𝜇

𝜆
}]  ; (𝜈, 𝜇, 𝜆, 𝜉) > 0, (4.9) 

⇒ 𝜌 = log[𝜙∗(𝜈|𝜇)] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 − 𝜉𝑙𝑜𝑔𝜇 − (𝜉 − 1)𝑙𝑜𝑔𝜈 −
𝜈

𝜇
−

𝜇

𝜆
 

Therefore 

𝜌1 =
𝜕𝜌

𝜕𝜈
=

(𝜉−1)𝜈

𝜈
−

1

𝜈
;(4.9a) 

and 

𝜌2 =
𝜈

𝜇2 −
1

𝜆
−

𝜉

𝜇
;(4.9b) 

Further more 

𝑙21 = 0 ; 𝑙12 = −𝛿2 ; 𝑙03 =
2𝑟

𝑝3 − 𝜈𝛿3;   (4.9c) 

𝑎𝑛𝑑  𝑙30 =
2𝑟

𝜈3 ;       (4.9d) 

Where    𝛿3 = ∑ 𝑥𝑖
𝜈r

i=1
(𝑙𝑜𝑔𝑥𝑖)3 + (𝑛 − 𝑟)𝑥𝑟

𝜈(𝑙𝑜𝑔𝑥𝑟)3 

By substituting above values in eqn. (4.7), yields the Bayes estimator under SELF using Lindley 
approximation denoted by  𝜚𝐴𝐵𝑆 

𝜚𝐴𝐵𝑆𝑄 = 𝐸(𝜚(𝜈, 𝜇)) = 𝜚(𝜈, 𝜇) + U + 𝜚1𝑈1 + 𝜚2𝑈2;   (4.10) 

Where U =
1

2
[𝜚11𝜎11 + 𝜚21𝜎21 + 𝜚12𝜎12 + 𝜚22𝜎22];(4.10a) 

U1 =
1

𝜈2𝐷2 [
𝑀𝜈𝐷

𝜇
(𝜇(𝜉 − 1) − 1) +

𝜈2𝛿1𝐷

λ𝜇2
{λν − 𝜇2 − λξμ} 

+
𝑟𝑀2

𝜈
−

𝑟𝑀𝛿1

2
− 𝜈2𝛿1

2𝛿2 +
𝑟2

𝜈3 𝛿1 −
𝜈𝑟𝛿1 𝛿3

2
];   (4.10b) 

U2 =
1

𝜈2𝐷2 [
𝜈 𝛿1𝐷

𝜇
(𝜇(𝜉 − 1) − 𝜈) +

r𝐷

λ𝜇2
{λν − 𝜇2 − λξμ} 

+ 
𝑟𝑀𝛿1

𝜈
−

3𝛿1𝑟𝛿2

2
+

𝑟2

𝜈2𝜇3 −
𝑟2𝛿3

2𝜈
];   (4.10c) 
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All the function of right hand side of the equation (4.10) are to be evaluated for 𝜈̂𝑀𝐿 and 𝜇̂𝑀𝐿 . 
 
Approximate Bayes Estimates of Reliability Under Squared Error Loss function 
 
with equations(4.10)-(4.10c), the different Approximate Bayes estimators Under SQELF using Lindley's 
approximation given by 
Special cases: 

(i) substituting 𝜙(𝜈, 𝜇) = 𝑅 = 𝑒−𝜈𝑡𝜇 in equation(4.7), we get the Approximate Bayes Estimator of 
Reliability R=R(t) as 

𝑅̂𝐴𝐵𝑆𝑄 = 𝑅 [1 +
𝑅𝑡𝜇

2𝐷
𝜉1 − 𝑡𝜇(𝑈1 + 𝜈 log 𝑡 𝑈2)]  ; at (𝜈̂𝑀𝐿 , 𝜇̂𝑀𝐿),        (4.11) 

where 

𝜉1 = 𝑀𝑡𝜇 + log 𝑡 (𝜈 𝑡𝜇 − 1) + [2𝛿1 +
𝑟𝑙𝑜𝑔𝑡

𝜈
] 

Numerical Calculations and Comparison 
 
The numerical calculations are done by using R Language programming and results are presented in form of 
tables. 
1. The values of (𝜈, 𝜇)and are generated from the equations (4.2-4.3) for given c=2, and d=3, which comes 
out to be 𝜈=0.238 and 𝜇=0.227. For these values of 𝜈 and 𝜇 the Weibull random variates are generated. 
2. Taking the different sizes of samples n=25 (25) 100 with failure censoring, MLE's, the Approximate Bayes 
estimators of Reliability,and their respective MSE's (in parenthesis) by repeating the steps 500 times, are 
presented in the table(1) forparameters of prior distribution 𝑐 =2 , and  𝑑=3. 
3. Table(1) presents the MLE of R(t) and Approximate Bayes estimators of reliability function R(t) of Weibull 
density under SELF (for 𝜈 and 𝜇 both unknown) with their respective MSE's. The all four estimators are effi-
cient for larger sample size but as sample approaches to 100 their MSE's started increasing. 
 

Table(1) Mean and MSE's of R(t) 
(λ = 2, ξ = 3, = 0.238, μ = 0.227, t = 2, R(t) = .07568 

n r 𝑅̂𝑀𝐿 𝑅̂𝐵𝑆𝑄 𝑅̂𝐴𝐵𝑆𝑄 

25 20 0. 649642 0. 79958 0. 74576 

  (1.7239x10-5) (3.0711x10-7) (4.0544x10-5) 
 

50 30 0.713952 0. 800211 0. 750967 

  (1.63169x10-7) (4.0081x10-7) (3.67188x10-6) 

75 50 0. 740252 0. 793433 0. 755524 

  (2.7167x10-8) (4.3171x10-8) (4.0074x10-8) 

100 75 0. 76858 0. 8937546 0. 8482655 

  (7.1028x10-6) (7.1229 x10-4) (7.0887 x10-5) 
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