

The Distribution Of Seaweed Resources In Kanyakumari Coast, Tamil Nadu, India.

R.Saravanavel^{1*} And M. Mathevan Pillai²

^{1*}Assistant Professor of Botany, Lekshmipuram College, Neyyoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

²Associate Professor of Botany, S.T.Hindu College,Nagercoil, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

*Corresponding Author: R.Saravanavel

*Assistant Professor of Botany, Lekshmipuram College, Neyyoor, Affiliated to Manonmaniam Sundaranar University, Tirunelveli, Tamilnadu, India

Abstract

Seaweeds are a renewable marine resources and have not yet received considerable attention in the field of taxonomy in India as compared to their terrestrial counterparts, essentially due to the lack of awareness of their economic potential. Although the recent inventory from the Indian region documented the presence of approximately 865 seaweed taxa, of which only a few are taxonomically well characterized, more precise information still awaits with respect to microscopic and molecular examinations of many. Thus far, in terms of spatial extent, probably only a few of the total hospitable seaweed habitats have been explored, and large portions, including island territories and sub tidal waters, remain virtually untouched. Surveying those may lead to the reporting of several taxa new to science. Furthermore, more focused efforts are required to understand the endemic and endangered taxa which have high conservation implications. Considering the unprecedented pressures seaweeds are facing, including coastal pollution and human-induced global warming, it is critical to reinforce our knowledge of seaweed biodiversity. In the present communication, we intended to address the status of seaweed biodiversity in Kanyakumari coast. with the gaps, challenges, and opportunities.

Keywords: Biodiversity, Conservation, Kanniyakumari, Seaweeds

INTRODUCTION

Seaweeds refer to any large marine benthic algae that are multicellular, macro thallic and thus differentiated from most algae that are of microscopic size (Smith, 1944). These plants form an important renewable resource in the marine environment and have been a part of human civilization from time immemorial. The seaweed flora of India is highly diversified and comprises mostly of tropical species, but temperate and subtropical elements have also been reported. Seaweeds form one of the important living resources grouped under three classes namelyChlorophyceae (green algae), Phaeophyceae (brown algae) and Rhodophyceae (red algae). About 6000 species of red seaweeds 2000 species of brown seaweeds and 1200 species of green seaweeds occurred globally and the world production of seaweeds was estimated as 21,65,675 million tons per year (Kaliaperumal, 2007). The greatest variety of red seaweeds is found in subtropical and tropical waters, while brown seaweeds and green seaweeds are more common in cooler and temperate waters respectively (Dowes, 1981). Seaweeds form an important renewable resource in marineenvironment and have been a part of human civilization from time immemorial.

The first report on seaweed diversity was published by Iyengar (1927) on the flora of Krusadai Island, Southeast coast of India. Subsequently, Boergesen (1928) investigated the seaweeds of the west coast and

published a new record of Rosenvinge astellata Boergesen. Later Thivy (1948), Krishnamurthy (1957) and Umamaheswara Rao (1969) made substantial contributions to increase our knowledge of India's seaweed diversity. Oza and Zaidi (2001) updated the checklist of seaweed diversity based on secondary data and reported 844 species of seaweeds with 434, 194, and 216 species of red, brown, and green seaweeds, respectively. The CSMCRI team explored the seaweed diversity of the Gujarat and Tamil Nadu coasts (Jha et al. 2009) known for their relative abundance of seaweeds. These two maritime states, collectively, are home to 366 seaweed species that account for nearly half of India's total seaweed diversity. The climate change and global warming will have considerable adverse impacts over the natural resources of Tamilnadu. Tamil nadu is famous for its seaweeds diversity. There are only some studies on the distribution, frequency, density and abundance of seaweeds. Boergesen (1934) was the first researcher to have worked on the geographical distribution of some marine algae. Anand (1940, 1943) and Nizermuddin and Gessner (1970) also worked on the distribution, dominance and abundance of some seaweeds. 3 Saifullah (1973) listed out the abundance, biomasses variation and tidal variation of seaweeds. Qari (1985) worked on ecology and biochemical composition of seaweeds. The ecology of seaweeds is dominated by two specific environmental requirements. These are the presence of sea water and the presence of light sufficient to drive photosynthesis and another important common requirement is to have a firm point of attachment. Therefore, seaweeds are most commonly found in the littoral zone and within that zone more frequently on rock shores than on sand or shingle shore (Smith, 1944).

The southern coastal region of Tamil Nadu has rich seaweed diversity because it has a lot of rocky coastal regions which face several problems due to various environmental changes and human activities. In 2004, the Mannar Biosphere Reserve especially Kanyakumari and its neighboring places were disturbed by human activity. In the recent years the seaweed resources have been disturbed by Thermal Power Station at Thoothukudi and its surrounding areas. The construction of the Atomic Power Station at Koodankulam will definitely affect the diversity of seaweeds at nearby places such as Idinthakarai and Kootapuzhi. Seaweed resources of Rameswaram and its neighboringplaces may also be affected by Sethusamudram project. These developments necessitate a survey of seaweed resources along the coast of Tamil Nadu. Although a number of systematic surveys have been made on seaweed resources of the southern coastal region of Tamil Nadu, there is no proper documentation for the seaweed resources availability with reference to the seasons. There are only a few scattered reports about seaweed resources in the selected area of the southern coastal region of Tamil Nadu. All the previous studies carried out during the last 50 years are only from scattered localities with small area as follows: Kanyakumari region (Nair et al., 1993; Stella et al., 1997; Edwin, 2004), Tirunelveli region (Kaliaperumal and Pandian, 1984; Kaliaperumal et al., 1995; Selvaraj and Selvaraj, 1997), Thoothukudi region (Mahadevan and Nagappan, 1967; Krishnamurthy, 1980; Kaliaperumal and Pandian, 1984; Kaliaperumal et al., 1998) and Ramanathapuram region (Chacko et al., 1955; Varma and Krishna, 1962; Umamaheswara Rao, 1969; Krishnamurthy and Joshi, 1970; Subbaramiah et al., 1977; Kaliaperumal and Kalimuthu, 1994; Kaliaperumal et al., 1998). From such scattered and sporadic reports, the actual number of seaweeds is obscure from the southern coastal region of Tamil Nadu, because each and every researcher has given different number of seaweeds from the same locality. The study is carried out to accesses the basic status of seaweeds diversity occurring in kanyakumari. In this context, a study on seaweeds diversity along the coast of kanyakumari is undertaken. Although many studies have been undertaken to evaluate the species diversity of seaweeds in India, no scientific studies have been carried out on the species composition of seaweeds of kanyakumaritamilnadu; hence, the present study is undertaken.

METERIALS AND METHOD

An initial survey was conducted earlier along the Kanniyakumari coast from Colachel to vattakaotai, to identify the major areas of seaweed prone sites. The entire coast was studied thoroughly via Kurumpannai, Colachel, Manavalakurichy, Muttom Kanniyakumari Leepuram Arokkiyapuram and vattakottai. The survey and collection of the seaweeds along the coast of kanniyakumari (Fig. 1) were started from December 2016 to November 2017. The specimens have been collected in the intertidal and sub tidal zones during the low tide when a large expanse of the shore was exposed. In this study, the specimens were collected along the intertidal and sub tidal zone of sampling location by snorkeling or wading through shallow water . Then, the specimens were put in the plastic bags or vials, washed in the seawater to remove any debris or attached

epiphytes. The vials or plastic bags were labeled with informative data such as the shape and colour of the specimens, substrate type, locality and date of the collected specimens. An image of the specimen had been captured using a digital camera or underwater digital camera to capture the specimen in its natural habitat. The specimens were undergoing preservation process where it was preserved in 4% formalin. Some specimens were also preserved as dry mounted specimens on herbarium sheets. Species identification follows standard taxonomic books and world's algae base at <u>www.algaebase.org</u>.

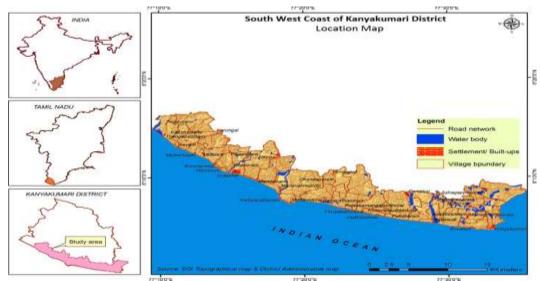


Fig.1.Map showing the study area of kanyakumari coast, Tamilnadu, India

RESULT AND DISCUSSION

A total number of 101 seaweed species were observed throughout the study period. Out of those, 31 species were Chlorophyceae, 20 species were Phaeophyceae, and 50 species were Rhodophyceae. The ratio of Chlorophyceae: Phaeophyceae: Rhodophyceae was 31:20:50. Thus species of red algae show more dominance in the seaweed flora at the coasts. Red algae grow better in the lower littoral zone and maybe more tolerant of the tropical environmental conditions. That may be the reason for the good growth of Rhodophyceae (red algae) as compared to Chlorophyceae of the Phaeophyceae. Chauhan (1994), Joshi and Murthy (2004), and Jha et al., (2009) also observed more number of Rhodhophycea compared to Phaeophyceae of the Chlorophyceae. During the diversity survey, economically important species like Ulva, Caulerpa, Sargassum, Padina, and Gracilaria were reported. Among them, Sargassum spp. was highly dominated followed by Gracilaria spp. During the survey, it is hypothesized that in general Green algae and Brown algae are observed during the months of the survey i.e. September to January while the majority of Red algae are found from January to March months. Results of the present study are satisfied with earlier reports of (Chauhan and Mairh, 1979) and (Domettila et al., 2013) along Muttom coastal waters of the southwest coast of India, Reddy et al., (2014) in seaweed resources of India, and (Naik et al., 2015) in Karwar Bay. A similar observation was recorded in the present investigation also. (Ishakani et al., 2016) from the Veraval coast reported a total of 67 species comprises of 21 species of Chlorophyta, 14 species of Phaeophyta, and 32 species of Rhodophyta species which revealed that the results of the present study are much similar to earlier researchers (Table 1).(Fig.2)

Table1:Taxonomic classification of seaweed species from Kanniyakumari coast,Tamilnadu, India.

S.No.	DIVISION : CHLOROPHYTA
	CLASS : CHLOROPHYCEAE
	Order : Ulvales Family : Ulvacea
1	Enteromorpha compressa (L.) Nees
2	Enteromorpha flexuosa (Wulfen) J. Ag.
3	Enteromorpha linza (L.) J. Ag.
4	Ulva fasciata Delile
5	Ulva lactuca L.
6	Ulva reticulata Forssk.

	Order : Cladophorales Family : Cladophoraceae
7	Cladophora fasicularis (Bony) Kutzing
8	Chaetomorpha litorea Harvey
9	Chaetomorpha media (C. Ag.) Kuetzing
10	Chaetomorpha tortuosa Kuetzing
11	Chaetomorpha crasassa Kuetzing
12	Cladophora vaqabunda (L.) Van den Hoek
13	Cladophora fasicularis. Kutzing
-	Order : Cladophorales Family : Siphonocladaceae
14	Boodelea composita (Harvy)Brand.
	Order : Cladophorales Family : Valoniaceae
15	Valoni pachymia (Martens) Boergs
	Order : Bryopsidales Family : Caulerpaceae
16	Bryopsis plumosa (Huds.) C. Ag.
17	Bryopsis pennata
18	Bryopsis hypnoides
19	Caulerpa chemnitzia (Esper) Web v Bosse
20	Caulerpa latevirens Montagne
21	Caulerpa parvula Svedelius
22	Caulerpa peltata Lamour
23	Caulerpa racemosa (Forssk.) Web. v. Bosse
24	Caulerpa scalpelliformis (R. Br.) Web. v.
25	Caulerpa taxifolia (Vahl.) C. Ag.
26	Caulerpa microphysa Feldman
27	Caulerpa maxicana Kutzing
	Order : Bryopsidales Family : Codiaceae
28	Codium decorticatum
	Order : Bryopsidales Family : Halimedaceae
29	Halimeda macroloba
30	Halimeda opuntia
31	Halimeda tuna
	DIVISION : PHAEOPHYTA
	CLASS : PHAEOPHYCEAE
	Order : Dictyotales Family : Dictyoceae
32	Dictyota bartayresiana Lamouroux
33	Dictyota dichotoma (Huds.) Lamouroux
34	Dictyota divaricata Lamouroux
35	Dictyota pinnutifida Kutzing
36	Stoechospermum marginatum (C. Ag.) Kutzing
37	Hormophysa cuneiformis
38	Padina boergesenii Allender & Kraft
39	Padina pavonica (L.) Thivy ex Taylor
40	Padina tetrastromatica Hauck
41	Lobophora varigata Lamourex
42	Spatoglossum asperum J. Ag.
43	Spatoglossum variable Figari
	Order :Scytosiphonales Family : Scytosiphonaceae
44	Colpomenia sinuosa (Mertens ex Roth) Derb. et Sol.
45	Hydroclathrus clathratus (C.Ag)Howe
46	Rosenvingea intricata (J. Ag.) Boergesen
	Order :Fucales Family : Sargassaceae
47	Sargassum duplicatum C.Ag
48	Sargassum linearifolium (Turner) C.Ag.
49	Sargassum ilicifolium (Turn.) J. Ag.
50	Sargassum tenerriumJ.Agarth
51	Sargassum wighti Grevile
	DIVISION : RHODOPHYTA
	CLASS : RHODOPHYCEAE
	Order :Halymeniales Family : Halymeniaceae
52	Cryptonemia coriacea Schmitz
53	Cryptonemia lomation (Bertoloni) J. Ag.
54	Liagora ceranoides Lamouroux
	Grateloupia filicina (Wulf.) J. Ag.

F.C.	Underson in florencies (Close) C. An
56	Halymenia floresia (Clem.) C. Ag.
	Order :Gelidiales Family : Gelidiaceae
57	Gelidium micropterum Kuetz. A.
58	Gelidium pusillum (Stackhouse) Le Jolis
59	Gracilaria corticata J. Ag.
60	Gracilaria crassa (Harvey) J. Ag.
61	Gracilaria cylindrica Boergesen
62	Gracilaria edulis (Gmelin) Silva
63	Gracilaria fergusonii J. Ag.
64	Gracilaria foliifera (Forsskal) Boergesen
65	Gracilaria kanyakumariensis Umamaheswara Rao
	Order :Corallinales Family : Corallinaceae
66	Amphiroa anceps (Lamarck) Decaisne
67	Amphiroa foliacea Lamouroux
68	Amphiroa fragilissima (L.) Lamouroux
69	Amphiroa rigida Lamouroux
70	Cheilosporum spectabile (Harvey) Weber van Bosse
71	Jania rubens (L.) Lamouroux
72	Portieria hornemannii (Lyngbye) Silva
	Order : Gigartinales Family : Cystocloniaceae
73	Hypnea flagelliformis Greville ex J. Ag.
74	Hypnea musciformis (Wulf.) Lamouroux
75	Hypnea valentiae (Turner) Montagne
76	Ahnfeltiopsis densa (J. Ag.) Silva et Decew
	Order :Gigartinales Family : Solieriaceae
77	Sarconema scinaioides Boergesen
78	Solieria robusta (Grev.) Kylin
79	Coralina berteroi
80	Jania ruben
81	Rhodeminia sonderi Silva
82	Botrycladia leptopoda (J.Agardh) Kylin
	Order :Rhodymeniales Family : Rhodomeniaceae
83	Gelidiopsis variabilis (Grev.) Schmitz
	Order :Rhodymeniales Family : Champiaceaeae
84	Champia indica Boergesen
85	Champia compressa Harvey
86	Champia glomerata Harvey
87	Champia parvula (Agardh) Harvey
	Order :Ceramiales Family : Ceramiaceae
88	Ceramium procumbens Setchell et Gardner
89	Centroceras clavulatum (C. Ag.) Montagne
90	Spyridia hypnoides (Bory) Papenfuss
91	Spyridia filamentosa Harvey
92	Griffithsia corallinoides (Linnaeus) Trevisan
93	Dictyurus purpurascens Bory
94	Enantiocladia prolifera (Greville) Falkenberg
95	Neurymenia fraxinifolia (Mertens) J. Ag.
	Order :Ceramiales Family : Rhodomelaceae
96	Acanthophora muscoides (L.) Bory
97	Acanthophora spicifera (Vahl.) Boergesen
98	Laurencia flagellifera J. Ag.
99	Laurencia obtusa (Hudson) Lamouroux
10	Laurencia papillosa (Forsskal) Greville
10	Laurencia pediculariodes Harvey

Ulvafaciata

Cchaetomorphaantennina

Caulerba recemosa var turbinata

Colpomenia sinuosa Champia indica Fig.1.Some common Seaweeds and species photos collected from Kanyakumari coast, Tamil Nadu, India.

CONCLUSION

As described above, the present work has increased our knowledge on the current status of seaweed in kannyakumari coast. For precise evaluation of the present status and future prediction of marine ecosystems, much more quantitative information on variability of seaweed communities must be compiled. In this sense, new ecological observation on seaweed will provide more efficient ground truth. Marine plants are usually archived as dried herbarium specimens. To clearly understand the present status of seaweed communities; to know the changes of these communities by keeping monitoring them; to clarify the marine plant biodiversity in full details and to predict the future of the marine ecosystems in this region. Specimens for current and future investigations.

REFERENCE

1. Appeltans, W.; Bouchet, P.; Boxshall, G.A.; Fauchald, K.; Gordon, D.P.; Hoeksema, B.W.; Poore, G.C.B.; van Soest, R.W.M.; Stöhr, S.; Walter, T.C.; et al. World Register of Marine Species (WoRMS). 2011.

- 2. Barbier, M.; Charrier, B.; Araujo, R.; Holdt, S.L.; Jacquemin, B.; Rebours, C. *Pegasus-Phycomorph European Guidelines for a Sustainable Aquaculture of Seaweeds, COST Action FA1406*; Barbier, M., Charrier, B., Eds.; Station Biologique de Roscoff: Roscoff, France, 2019.
- 3. Christie H, Norderhaug KM, Fredriksen S Macrophytes as habitat for fauna. Mar EcolProgSer 396:221–233. 2009.
- 4. Convention on Biological Diversity. *Article 2. Use of Terms*; United Nations; Convention on Biological Diversity: Montreal, QC, Canada, 1992.
- 5. Dawes C.J., McIntosh R.P. The effect of organic material and inorganic ions on the photosynthetic rate of the red alga *Bostrychiabinderi* from a Florida estuary. *Mar. Biol.* 1981; 64: 213–219.
- 6. Dhargalkar VK, Pereira N Seaweed: promising plant of the millennium. Sci Cult 71:60–66. 2005.
- 7. FAO. *The State of World Fisheries and Aquaculture-Meeting the Sustainable Development Goals*; FAO: Rome, Italy, 2018.
- 8. Kolanjinathan, K and P. Saranraj. Pharmacological efficacy of marine seaweed Gracilariaedulis against clinical pathogens. Global Journal of Pharmacology, 8(2): 268 274. 9),2004.
- 9. Kalimuthu, Kalia perumal, J.R. RamalingamDistribution of algae and sea grasses in the estuaries and backwaters of Tamilnadu and PondicherrySeaweed Res. Utiln., 17 (1995), pp. 79-86
- 10. Lobban C.S., Harrison P.J. Cambridge University Press; New York, New York, USA: 1994. Seaweed Ecology and Physiology; pp. 134–145
- 11. Macartain, P., Gill, C.I.R., Brooks, M., Campbell, R., Rowland, I.R., 2007. Special article nutritional value of edible seaweeds. Nutr. Rev. 65, 535–543. https://doi.org/ 10.1301/nr.2007.dec.535.
- 12. Maddison, D.R.; Guralnick, R.; Hill, A.; Reysenbach, A.L.; McDade, L.A. Ramping up biodiversity discovery via online quantum contributions. *Trends Ecol. Evol.* **2012**, *27*, 72–77
- 13. Mora, C.; Tittensor, D.P.; Adl, S.; Simpson, A.G.B.; Worm, B. How Many Species Are There on Earth and in the Ocean? *PLoS Biol.* **2011**,1001-127.
- 14. Nybakken J.W. fifth ed. Benjamin Cummings; San Francisco, California: 2001. Marine Biology: an Ecological Approach.
- 15. Rath, S.P. AdhikaryMarine macro algae of Orissa, East coast of India ALGAE, 21 (2006), pp. 49-59