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Abstract 

Apart from algebraic correlations, we need to take into account physical correlations in observations due to 

inestimable systematic errors. This is especially important in the case of GPS measurements. Different investigators have 

obtained values of correlation coefficients of up to 0.85 for identical satellite configuration due to physical correlations. The 

attempt has been to introduce these correlations or some correlation functions into post-processing of GPS measurements in 

order to improve the results. As illustrated in our report however, it may be very problematic in practice and could lead to 

extraordinarily absurd results. One such unexpected effect may be artificial increase of the weight P of the results. When 

weight 𝑝𝑖 even of one observation approaches zero (𝑝𝑖 → 0), we could obtain P→∞. The result is clearly absurd and has no 

physical meaning. That is why the formal estimates of accuracy do not reflect the real situation in the case of physically 

correlated observations. We encountered this phenomenon when developing a code for optimal GPS geodetic network design 

for fault-mechanics studies. Considering this undesirable phenomenon, we do not exclude the necessity for revision of some 

methods used in improving GPS processing results. It would be particularly important in methods that use different non-

diagonal covariance matrices of observations. We have proposed a method for correction of physical correlation which solved a 

numerical problem in the optimal design of geodetic networks. 

Keywords: Correlation Matrix, Extraordinary Influence of Correlation Coefficients, Optimal Design, Physical Correlation, 

Geodetic Network, GPS. 

 

1. Introduction 

Today the GPS is widely used in geodesy and geodynamics. In connection to this, there has been 

a significantly increased interest in adjustment of correlated observations.  GPS data for closely 

distributed stations are physically correlated because they are made in practically identical atmosphere 

conditions, using the same satellite constellation and are thus affected by almost the same systematic 

errors. Therefore, we not only need to take into account algebraic correlations but physical ones as well 

in data processing. For example, [1] analyzed the multipath effect at the same site for two consecutive 

days and obtained values of correlation coefficients due this error source of up to 0.85 for identical 

satellite configurations. The influence of physical correlation on accuracy estimates of GPS 

measurements is shown by [2] as well. These correlations have a considerable influence on the 

evaluation of GPS measurements [3]. Sometimes this problem is solved by introducing into the post-

processing stage the correlation matrix of GPS observations [4, 5]. Very often the correlation coefficients 

of this matrix are calculated using some experimental or intuitive assumptions which might not reflect 

the real physical situation. 

Sallehetal. 
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Sometimes these correlation coefficients have an extraordinary influence on processing results 

and in the most complicated cases could eventually lead to absurd results. To our knowledge, this 

problem has not been adequately addressed in any current literature available to us. There are only a 

few examples of such effects for strongly correlated data [6]. Probably it could be due to the large 

correlation matrix involved, significant processing volume and its complication. As a result, many details 

in the computation process are hidden from researchers, especially if all calculations are performed by a 

computer. Exaggerated improvement in the accuracy of the final results may be misinterpreted as the 

correct choice of the modeling function used for calculation of correlation coefficients. In reality, 

however such accuracy improvement may be as a result of mathematical manipulations and not reflect 

the real situation. 

From our experience, no significant results have been obtained during the last decades in 

correlation errors processing theory. Usually, the problem discussed here is solved by formally applying 

the principles of correlation theory [7].But this “formal” usage of mathematical methods for modeling 

physically correlated observations could lead to extraordinary results as shown in the next sections using 

simple numerical examples. 

2. Methodology. Weighted Mean of Correlated Observations of the Same Variable 

Let n correlated observations of the same variable y be given as a vector of observations 𝒀 =

(𝒚𝟏, 𝒚𝟐, … , 𝒚𝒏)𝑻with non-identical weight𝒑𝒊. The cofactor matrix of the vector of observations is given 

by equation 

𝐐 = 𝐏−1/2𝐑𝐏−1/2 (1) 

Where 𝐏 = 𝒅𝒊𝒂𝒈(𝒑𝟏, 𝒑𝟐, … , 𝒑𝒏) is the diagonal weight matrix and𝐑 is the correlation matrix. 

The matrix 𝐑 has units on the main diagonal. Its non-diagonal elements ijr
are correlation coefficients of 

observations iy
 and jy

. 

The least square solution of a system of equations    

𝐀𝑦 − 𝑌 = 𝑉  , (2) 

gives us the estimate of unknown quantity 

ŷ = (𝐀𝑇𝐐−1𝐀)−1𝐀𝑇𝐐−1𝑌  , (3) 

where matrix 𝐀𝑻 = (𝟏, 𝟏, … , 𝟏)  consists of units only, 

𝐐−𝟏 = 𝐏𝟏/𝟐𝐑−𝟏𝐏𝟏/𝟐        (4) 

is the weight matrix,𝑽is the vector of residuals. The value 
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𝑃ŷ = 𝐀𝑇𝐐−1𝐀 = ∑ ∑ 𝑞𝑖𝑗
(−1)

𝑛

𝑗=1

𝑛

𝑖=1

  , (5) 

is the weight of weighted mean of correlated observations 𝒚𝒊 , where 𝒒𝒊𝒋
(−𝟏)

are the elements of 

the weight matrix 𝐐−𝟏. Therefore the estimate of the varianceŷare given as 

𝜎ŷ
2 =

1

𝑛 − 1

𝑉𝑇𝐐−1𝑉

𝑃ŷ
  , (6) 

Let us consider in more details the case when 𝒏 = 𝟐, i.e. only two correlated observations 𝒚𝟏 

and 𝒚𝟐 with the correlation coefficient 𝒓𝟏𝟐 = 𝒓 are made. In this case we have 

𝐐−1 =
1

1 − 𝑟2 (
𝑝1 −𝑟√𝑝1𝑝2

−𝑟√𝑝1𝑝2 𝑝2

), (7) 

𝑃ŷ =
1

1 − 𝑟2 (𝑝1 − 2𝑟√𝑝1𝑝2 + 𝑝2), (8) 

ŷ =
(𝑝1 − 𝑟√𝑝1𝑝2)𝑦1 + (𝑝2 − 𝑟√𝑝1𝑝2)𝑦2

𝑝1 − 2𝑟√𝑝1𝑝2 + 𝑝2

, (9) 

In the next section we make a preliminary inspection of a few particular examples using 

equations (7)-(9). 

3. Results. A Few Particular Examples of Extraordinary Absurd Results 

3.1 Example 1 

Let’s assume that both observations have the identical weights 𝑝1 = 𝑝2 = 𝑝. The equation (9) 

gives us the least square estimate 

ŷ = (𝑦1 + 𝑦2)/2.  

This means that the arithmetic average value may not depend on the magnitude of the 

correlation coefficients. For two measurements it is obvious from the formula given above. 

But for the weight of average value 

𝑃ŷ =
2𝑝

1 + 𝑟
  , (10) 

a situation is not so simple. A correlation coefficient changes within the limits −1 ≤ 𝑟 ≤ 1. Thus 

if 𝑟 increases from 0 to +1 then weight 𝑃ŷdecreases from 2𝑝to 𝑝. There are no serious objections to this 

result but the weight of one observation is ignored. Another situation if 𝑟 changes from 0 to -1, the 

quantity 𝑃ŷ ≥ 2𝑝. When 𝑟 → −1we obtain the weight 𝑃ŷ → ∞! This is a clearly absurd results and it is 
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impossible in case of uncorrelated observations. 

3.2 Example 2 

Let’s consider a case of non-identical weights. Let’s assume  𝑝1 = 𝑝 = 1,  𝑝2 = 𝑐𝑝 = 𝑐, where 𝑐 

is some constant. In that case we obtain 

𝑃ŷ =
1

1 − 𝑟2 (1 − 2𝑟√𝑐 + 𝑐)  , (11) 

ŷ =
(1 − 𝑟√𝑐)𝑦1 + (𝑐 − 𝑟√𝑐)𝑦2

1 − 2𝑟√𝑐 + 𝑐
 , (12) 

From equation (11) follows that if 𝑟 > 0 then weight 𝑃ŷ = 𝑚𝑖𝑛 when 𝑐 = 𝑟2and then from 

equation (12) follows ŷ = 𝑦1!  

Moreover when 𝑝2 = 𝑐 = 0 (second observation is absent), we have again 1
ˆ yy = , butthe 

weight 𝑃ŷ =
1

1−𝑟2 ≥ 𝑝1and when |𝑟| → 1we obtain the absurd result 𝑃ŷ → ∞. We obtain this result 

under the assumption that actually we carry out only one observation with weight 𝑝1 = 1! 

3.3 Example 3 

From equation (12) as a particular case we could obtain that if 𝑐 = 1/𝑟2(or 𝑟 = 1/√𝑐 )  then the 

estimate ŷ = 𝑦2 with the weight 𝑃ŷ = 𝑐. It means that the final results are fully independent from the 

first measurement, which is impossible in case of uncorrelated observations. 

3.4 Example 4 

Let’s assume that we measured two height differences ℎ1 = 101𝑚𝑚  and ℎ2 = 102𝑚𝑚  with 

the physically correlation coefficient 𝑟 = 0.9 and weights𝑝1 = 1 and 𝑝2 = 𝑐 = 4  from two original 

rappers with heights 𝐻1 = 𝐻2 = 0 𝑚𝑚 to determine point. The height H of this point accordingly on the 

basis of common sense must be in the limits 

ℎ1 ≤ 𝐻 ≤ ℎ2  . (13) 

Using the equation (12) we obtain 𝐻 ≈ 102.57 𝑚𝑚 ! This result seems to be obviously absurd 

because it is more than numerical value of any of observations.  For independent observations this 

phenomenon is not observed and 𝐻 ≈ 101.8 𝑚𝑚. An almost identical example is given on p. 326 by 

Strang and Borre [6]. 

In order to remove the such absurd effect, it should be taken into account that the correlation 

coefficient must satisfies condition for two measurements of the same variable 

𝑟 ≤ 𝑚𝑖𝑛 (√
p1

p2
; √

𝑝2

𝑝1
) = 𝑟0 , (14) 
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which is derived from natural inequalities |𝑣1 + 𝑣2| ≤ |ℎ2 − ℎ1| for residuals to the 

measurements and evaluation of guaranteeing hit in the limits (13).  

Then in our elementary example should be 𝑟 ≤ 0.5. When 𝑟 = 0.5, the value H=102.0, which is 

more reasonable. However, here it is easy to see that provided the first measurement with a weight 

𝑝1 = 1not involved in the calculation of H that is not entirely correct. To remedy this situation, you 

should use the corrected correlation coefficient 𝑟̅ = 𝑟 ∙ 𝑟0. In our case𝑟̅ = 𝑟 ∙ 𝑟0 = 0.45 and then 

Р = 101.97. 

We now turn to equation (8) that is formally in our case it is suitable to determine the weight 

adjusted mark H. From (8) if 𝑝1 → 0 or 𝑝2 → 0, the weight adjusted determined mark 𝑝𝐻 →

𝑚𝑎𝑥(𝑝1,𝑝2)

1−𝑟2 that is more than any weight of measurement. This is an absurd result! 

4. Discussion. Application of Physical Correlation in Optimal Geodetic Network Design 

The physical coefficients of correlation are functions of factors that contribute to the general 

features of the measurement results, i.e. make them dependent. Such factors can be practically the 

same atmospheric conditions at the points of measurements; the measurements are carried out by the 

same instrument and performer; an identical arrangement of obstacles and reflective surfaces at the 

points of satellite observations, etc. However, these functions explicitly raises major difficulties 

associated with the diversity and complexity of factors that contribute to the generality of the 

measurement results.  

Therefore, the physical coefficients of correlation are assigned a priori and often without 

sufficient physical and/or mathematical justification. Frequently used covariance functions depend on 

some parameters whose numerical values are obtained experimentally or appointed from particular 

views of the authors about the nature of the factors that lead to physical dependence measurements. 

The main criterion for the selection of covariance functions and their parameters is usually "improving" 

the accuracy of the final result. However, as shown above, this "increase" accuracy can be a purely 

formal and meaningless, having nothing to do with reality. In other words, before taking into account 

possible physical correlation in a particular task, you need to make sure that you enter in processing of 

correlation coefficients do reflect the physical reality. Integrating physical correlation during 

mathematical processing of the measurements and used correlation functions is dedicated toa rather 

extensive literature [2, 3, 4, etc.]. 

Not touching these questions, let us discuss more details on its account when optimizing the 

weights of the designed networks. In this case we assume that the physical coefficients of correlation (in 

numerical or analytical form) adequately reflect the real physical dependence measurements. Our task 

is to overcome the numerical problem of optimal design, described above, the essence of which boils 

down to the fact that when reducing the weight of any planned measure, the weight function of the 

results of measurements can be increased, i.e. general the solution is absurd. 
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Let us see more detail on the account of physical correlation when we optimizing the weights of 

measurements in the designed networks. Our task is to ensure a reasonable solution, in order to 

overcome the numerical problem of optimal design similar to Example 2 and 4 where the whole solution 

is obtained absurd. 

Note that in Example 2 we followed the formal mathematics that is used when performing 

calculations on a computer. Nevertheless, we should not forget and physics! The fact that when the 

weight of the second measurement 𝑝2 = c = 0, i.e. it is simply not available, to talk about any 

correlation of measurements do not make sense and should be put value 𝑟 = 0. Then 𝑃ŷ = 𝑝1 = 1 , that 

should be within the meaning. This is even more true that when 𝑝2 → 0, root mean error →2m and 

the possible systematic influence, which are the reason for the introduction of the physical correlation, 

"drowned" in the random measurement errors. 

Moreover, the above numerical problems occurs only for dependent measurements with 

different weights. In this case in the computer calculations necessary to adjust the coefficients of 

physical correlation so that when a weight 𝑝𝑖 → 0  or 𝑝𝑗 → 0  the correlation coefficient  𝑟𝑖𝑗 → 0. 

Suitable corrector can use the ratio of the minimum and maximum weights corresponding 

measurements; instead of physical correlation coefficient 𝑟𝑖𝑗must be used in the optimization coefficient 

𝑟̅𝑖𝑗 = 𝑟𝑖𝑗

min (𝑝𝑖, 𝑝𝑗)

max (𝑝𝑖, 𝑝𝑗)
  , (15) 

which allows the problem posed, what is easy to see in the considered example above. 

Additionally, we note that the revised by formula (15) the correlation coefficient also satisfies 

condition (14) for two measurements of the same variable that is removes theabsurd effects 

demonstratedinExample4. 

Using, for example, formula (15) for adjusting the correlation coefficients yielded positive results 

in the optimal GPS geodetic network design for fault-mechanics studies by the method proposed in 

[8].The coefficients of the physical correlations were calculated according to the formula by Johnson and 

Wyatt [5] 

𝑟𝑖𝑗 =
𝐿2

𝐿2 + (𝑑𝑖 − 𝑑𝑗)2
  , (16) 

Where L is a scaling length, (𝑑𝑖 − 𝑑𝑗)  is a distance between geodetic points 𝑖 and 𝑗. In some 

conditions correlation coefficients 𝑟𝑖𝑗 may have very big values. For example, if 𝐿 = 5 𝑘𝑚 km as 

assumed by [5] and 𝑑𝑖 − 𝑑𝑗 = 1 𝑘𝑚 we have 𝑟𝑖𝑗 = 0.96accordingly. As already mentioned above, the 

abnormal influence of those large correlation coefficients was manifested as accuracy improvement in 

the estimated fault parameters when useless GPS stations were eliminated from observation scheme by 

decreasing the weights to insignificant level of GPS measurements which were made on these sites. 
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Results of optimization for 𝐿 =  1 𝑘𝑚 and  |𝑑𝑖 − 𝑑𝑗| ≥ 1 𝑘𝑚, which corresponds 𝑟𝑖𝑗 ≤ 0.5, and 

using correction (15) were close to the results obtained by [8] that was obtained without taking into 

account the physical correlation.. 

It should be noted that the values of the coefficients of physical correlation, calculated by the 

formula (16)  under condition  |𝑑𝑖 − 𝑑𝑗| < 𝐿, will be greater than 0.5, that are unlikely to corresponds to 

the physical reality, and the use of optimization without adjustment (15) do not provide any reasonable 

solution. Correction coefficients according to formula (15) removes the problem. 

5. Conclusions 

At a first glance, the above discussed effects may appear to relate to some extreme cases only, 

with no practical use. Also, we have theoretically considered a case of two physically correlated 

observations only. But even in this simplest case we demonstrated unexpected peculiarities and absurd 

results which cannot be left without attention. What other unexpected effects can appear when 

processing correlated observations from spacious geodetic networks? By other words, investigations in 

correlated observations and their usage in practice is not completely solved. Considering this 

undesirable phenomenon, we do not exclude the necessity for revision of some methods used in 

improving GPS processing results especially those that make use of different non-diagonal elements of 

covariance matrices of observations. In some emergencies the formal estimates of accuracy do not 

reflect the real situation in case of physically correlated observations where accuracy may be artificially 

improved. Nevertheless, even considering this undesirable phenomenon in the case of two correlated 

observations, we have solved the numerical problem of obtaining a stable solution in the case of 

developing a code for optimal geodetic network design taking into account the possible dependence of 

projected measurements. 
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