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Abstract 

The objective of this paper is to study the static and dynamic behavior of square, rectangular plates 

made up of Functionally Graded Material (FGM) subjected to transverse loading by Classical Plate Theory (CPT) 

and First Order Shear Deformation Theory (FSDT).Simply supported square and rectangular FGM plates 

consisting of ceramic (Alumina) at the top layer and metal (Aluminium) at the bottom layer subjected to a 

uniform pressure and mid-point load on the top surface of the plates were considered. Assuming the Poisson’s 

ratios to be constant for ceramic and metal. However the Young’s moduli of ceramic and metals change 

continuously throughout the thickness direction according to the volume fraction of the constituents materials 

on the basis of powerlaw. The solutions of the square and rectangular FGM plates were obtained by expanding 

the transverse load in terms of Fourier series expansion and then the sinusoidal terms of the Fourier series 

were solved by Navier’s solution technique. Then, the solutions of the square and rectangular FGM plates 

obtained by CPT and FSDT were compared with the numerical results of finite element model which is 

developed using ANSYS Parametric Design Language (APDL). The parametric study includes the effect of 

volume fractions, aspect ratios, various thickness, support conditions, loading conditions on static and dynamic 

parameters. The static parameters considered were non-dimensional mid-plane displacements, non-

dimensional stresses and strains where the dynamic parameter includes non-dimensional natural frequencies. 

Keywords— Functionally graded plates, CPT, FSDT, poisson’s ratios , young’s moduli , power law , ANSYS, static  

and dynamic parameters.  

 

I. INTRODUCTION 

 

Functionally graded materials are new type of materials, where the volume fractions 

of two or more materials are varied continuously as a function of position along certain 

dimensions of the structure in order to achieve required functions. The composition of the 
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FGM plate is varied from ceramic-rich surface to  metal-rich surface, with desired variation 

of volume fractions of the two materials in between two surfaces. FGM has the ability to 

control corrosion, wear and buckling. Ceramic constituent has low thermal conductivity as it 

provides high-temperature resistance when place at top of the material. Thus, the metal 

component on the other side of material prevents fracture due to thermal stresses. The 

effective material properties of FGM are assumed as temperature independent and 

gradually varying in the plate thickness direction for the plate structures. 

Shyang-Ho Chi [4] used the power law, sigmoidal and exponential functionby CPT to 

investigate the rectangular elastic simply supported FGM plate having medium thickness 

and by varying the material properties in thickness direction when subjected to transverse 

loading. 

Huu-Tai Thai and Dong-Ho Choi [2]presented the bending and free vibration analysis 

of FGM plates by FSDT. The equations of motion and boundary condition is derived by using 

Hamilton’s principle. 

 

II. CLASSICAL PLATE THEORY 

A. Introduction 

 Based on the assumptions proposed by Kirchhoff, In 1888, Love developed the Classical 

plate theory (CPT), which is an extension of the Euler-Bernoulli beam theory. The 

expressions for stresses and strains of the FGM plates were derived depend on the following 

assumptions. 

• Before and after deformations, the line elements perpendicular to middle surface of the 

plate remain normal and unstretched. 

• The linear strain displacement relations are valid, because comparing to the thickness, the 

deflection of the FGM plate is very small. 

• The thickness of FGM plate is assumed to be 1/20 to 1/100 of its span, which is very small. 

Hence the normal stress along the thickness direction has no effect on in-plane strains and it 

can be neglected. 

• Young’s modulus, Density and Poisson’s ratio are functions of the spatial coordinate z. 

 

B. Effective Material Properties 

Consider an elastic rectangular plate as shown in Fig. 1. The plane of the plate is 

defined by the coordinates x and y and the z-axis originated at the middle surface of the 

plate is in the thickness direction. The effect of Poisson’s ratio on the deformation is much 

less when compared to Young’s modulus. Hence, in the FGM plates, with the use of power 

law functions, Young’s moduli in the thickness direction isvaried.Based on power law, the 

variation through the thickness of material properties is given by, 

 g(z) ={
z+h/2

h
 }p 

where p defines the material variation profile and h represents the thickness of the plate. 

The material property of power law based FGM plate is given by, 

https://en.wikipedia.org/wiki/Gustav_Kirchhoff
https://en.wikipedia.org/wiki/Beam_theory
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E(z) = g(z)E1 + [1-g(z)]E2 

whereE1 = Young’s modulus of the bottom surface (z = - h/2)of the FGM plate, 

E2 =Young’s modulus of top surface (z = h/2) of the FGM plate. 

 

 
Fig.1  FGM Plate geometry  

 

 

C.  Static Analysis 

As per the first assumption, after deformation a point A in the FGM plate will move 

to point Aowith a distance of z to the middle surfaceas shown in Fig.2. Accordingly, the 

transverse strain components εz,γxz, and γyz are trivially small [1]. 

 

 
Fig.2 Deformed Configuration of FGM Plate Based on CPT 

The in-plane displacements u,v and w at the generic point in the FGM plate can be 

expressed in the following way, 

u(x,y,z)  = uo(x,y) – z
∂w

∂x
   

v(x,y,z)  = vo(x,y) – z 
∂w

∂y
   

w(x,y,z)  = wo(x,y)    

whereuo(x,y), vo(x,y) andwo(x,y) are the mid-plane displacements in x, y, and z directions 

respectively. The strain field of the plate is defined based on the assumptions of small 

deformation and is given as, 

εx = 
∂u

∂x
  = εxo  - z  

∂²w

∂x²
  

z 

y 

x 

x 

A 

A

o 

z
∂w

∂x
 

h 
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εy = 
∂v

∂y
  = εyo  - z  

∂²w

∂y²
   

γxy= 
∂u

∂y
 +   

∂v

∂x
  = γxyo– 2z 

∂²w

∂x ∂y
  

εz= γxz= γyz = 0   

By considering the third and fourth assumptions,for the plane stress problem the 

stress–strain relationship is given by, 

σx =  
E(z)

1−µ(z)² 
{εx  + µ(z) εy } 

σy   =  
E(z)

1−µ(z)²
  { εy+ µ(z) εx}  

τxy   =  
E(z)

2(1+µ(z))
{γxyo– 2z 

∂²w

∂x ∂y
}  

 Assuming that qx, qyand qzbe the distributed load in FGM platesalong the three 

directions. By considering a small solid element havingthe dimensions dx, dy and dz. The 

equilibrium equation in terms of bending momentsfor FGM plate is given by, 
∂²Mx

∂x²
 + 2 

∂²Mxy

∂x ∂y
 + 

∂²My

∂y²
   = - qz (x,y)  

The governing equation for stress function is represented by using the compatibility 

equation. 
∂²εxo

∂y²
 + 

∂²εyo

∂x²
    =  

∂²γxyo

∂x ∂y
 

Consider an FGM plate of length=a, width=b and uniform thickness=h , which is 

subjected to the lateral load qz(x,y).By Fourier series, the above load is expanded as,  

qz(x,y)  = ∑ ∑ qmn sin
mπx

a
sin

nπy

b
∞
𝑛=1

∞
𝑚=1  

where,qmn= 
4

ab
∫ ∫ qz (x, y)

𝑏

0

𝑎

0
sin

mπx

a
sin

nπy

b
dx dy 

If the uniformly distributed load (q z (x,y)) is acting on the top surface of the FGM plate, 

then 

qmn =
16q

mnπ²
for m and n = 1,3,5,7,….. 

qmn =0for m and n = 2,4,6,8,…..  

Suppose,the point load (P) is acting at x = u, y = v, then 

qmn =
4P

ab
sin

mπu

a
sin

nπv

b
   for m,n = 1,3,… 

qmn =0 for m,n = 2,4,... 

For simply supported plate, the boundary conditions are given by,  

@x =0 to a,   w=0 ;Mx = 
𝜕²𝑤

𝜕𝑥²
  = 0 

@y =0 to b,   w=0 ;   My = 
𝜕²𝑤

𝜕𝑦²
  = 0  

So as to satisfy the loading conditions and boundary conditions, the displacement 

function ‘w’ is in the form of,  

w (x,y) = ∑ ∑ qmn sin
mπx

a
sin

nπy

b
∞
𝑛=1

∞
𝑚=1  

wherewmn = 
qmn

D (z)[(
mπ

a
)² (

nπ

b
)²]² 
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w(x,y)=
1

𝐷(𝑧)
∑ ∑

qmn

[(
mπ

a
)

2
+  (

nπ

b
)²]²

∞
𝑛=1

∞
𝑚=1  sin

mπx

a
sin

nπy

b
 

The above solution is the Navier’s solution for square and rectangular FGM plate which 

is simply supported. 

The strain fields of FGM plates are given by, 

εx= 
z+ Q11 

D(z)
∑ ∑

qmn(
mπ

a
)²

[(
mπ

a
)

2
+  (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

εy=
z+ Q11 

D(z)
∑ ∑

qmn(
nπ

b
)²

[(
mπ

a
)

2
+  (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1  sin

mπx

a
sin

nπy

b
  

γxy=
−2(z+ Q11)

D(z)
∑ ∑

qmn(
mπ

a
)(

nπ

b
)

[(
mπ

a
)

2
+ (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 cos

mπx

a
cos

nπy

b
 

The stress fields of FGM plates are given by, 

σx=
12(z+Q11)

ℎ³
∑ ∑

qmn[(
mπ

a
)

2
+μ(

nπ

b
)²]

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

σy=
12(z+Q11)

ℎ³
∑ ∑

qmn[(
nπ

b
)

2
+μ(

mπ

a
)

2
]

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

τxy= 
−12(z+Q11)

ℎ³
∑ ∑

(1−µ)qmn(
mπ

a
)(

nπ

b
)

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 cos

mπx

a
cos

𝐧𝛑𝐲

𝐛
 

D.  Dynamic Analysis 

The propagation of waves in the thin plate is determined by the dynamic theory. The 

mathematical model of  continuous elastic dynamic plates can be done, either based on 

Newton’s laws by using partial differential equations or by considering virtual work using 

integral equations. According to D’Alembert’s principle, the forcing function of the 

governing differential equation for the plate becomes,  

D(z)[
∂⁴w

∂x⁴
 + 2

∂⁴w

∂x² ∂y²
 + 

∂⁴w

∂y⁴
 ]+ ρ(z)h 

∂²w

∂t²
(x,y,t) = 0 

 For a freely vibrating plate, the natural frequencies may be determined by assuming 

the displacement function as, 

w(x,y,t)=(ACosωt+BSinωt)W(x,y)       

 This is a separable solution of the shape function W(x,y) for modes of the vibration.ω 

is the natural frequency of the plate vibration. The natural frequency and vibration period T 

are related by ω = 2π
T⁄ . 

 By substituting the shape function in the governing differential equation, we have 

{D(z)[
∂⁴w

∂x⁴
+2

∂⁴w

∂x² ∂y²
+

∂⁴w

∂y⁴
]-ρ(z)hω²}W(x,y)=0        

 The shape function for a simply supported rectangular FGM plate may be taken as, 

W (x,y) = ∑ ∑ Cmn∞
𝑛=1

∞
𝑚=1  sin

mπx

a
  sin 

nπy

b
  

where a,b are the plate dimensions and Cmn is the amplitude of   vibration for all values of m 

and n. Then the governing differential equation is modified as, 

D(z) [ 
m⁴π⁴

a⁴
 + 2 

m2π²

a²

n2π²

b²
 +  

n⁴π⁴

b⁴
 ] - ω²ρ(z)h  =  0                 
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For the square and rectangular FGM plates, the natural frequency(ω) is obtained by 

solving the above equation, 

ω =√
D(z)

ρ(z)h
 ( π2{

m2

a²
+ 

n2

b²
 }) 

 Then the non-dimensional natural frequency(ω̅) is given by, 

ω̅=ω(
a2

h
)√

ρ1

E1
  

whereρ1and E1are the density and Young’s modulus of the metal respectively. 

 

III. FIRST ORDER SHEAR DEFORMATIONTHEORY 

A. Introduction 

First Order Shear Deformation Theory (FSDT) is the simplest plate theory which 

describes constant transverse shear strains through the plate thickness. The shear 

correction coefficients are required for calculating the transverse shear force. It basically 

depends on the following assumptions, 

• The plate deflections are small.  

• Plane sections which are perpendicular to middle plane of the plate remains plane but not 

necessarily normal to the middle plane. 

• Stresses normal to the mid-surface of plates are negligible. 

B.  Static Analysis 

The FGM plate displacement field is shown in Fig.3. The displacement field can be 

expressed by including the effect of transverse shear deformations as, 

u(x,y,z)  = uo(x,y) – z ψx(x,y)  

v(x,y,z)  = vo(x,y) – z ψy(x,y)  

w(x,y,z)  = wo(x,y) 

whereψx, ψy are the line element rotations about x axes and y axes. 

 
Fig.3 FGM Plate Deformed Configuration Based on FSDT 

The strain–displacement equations  are given by, 

εx = 
∂u

∂x
  = εxo  - z  

∂²w

∂x²
 

εy = 
∂v

∂y
  = εyo  - z  

∂²w

∂y²
  

γxy= 
∂u

∂y
 +   

∂v

∂x
  = γxyo– 2z 

∂²w

∂x ∂y
  

εz=  0     

γxz= 
𝜕𝑢

𝜕𝑧
 +   

𝜕𝑤

𝜕𝑥
  = ψx + 

𝜕𝑤

𝜕𝑥
 

z 

 

w 
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γyz =
𝜕𝑣

𝜕𝑧
 +   

𝜕𝑤

𝜕𝑦
 = ψy + 

𝜕𝑤

𝜕𝑦
 

The governing differential equations of FSDT are got from the principle of virtual work. 

The expression for the virtual work done due to internal forces by considering the 

transverse shear stresses may be given as, 

δwi= -∫ (
.

𝑉
σx . δεx+ σy. δεy+ τxy. δγxy + τxy. δγxy +τyz. δγyz+ τxz. δγxz )dV 

δwi= -∫ [∬ (
.

𝑅
(

ℎ/2

−ℎ/2
 σx . δεx+ σy . δεy+ τxy. δγxy + τxyδγxy + τyz. δγyz+ τxz. δγxz )dx.dy]dz 

V=volume of the plate 

R= Middle surface of the plate 

 
 

Fig.4 Forces along the Boundary and on the Surface of the Plate 

 

To find the virtual work due to external forces, the plate with arbitrary geometry having 

curved boundary may be considered as shown in Fig.4.Virtual work due to external forces, 

δwe= -∫ [∫ (
.

𝑐
(

ℎ/2

−ℎ/2
 Fn . δun + Fns . δus + Fnz. δwo)ds] dz +∬ ( 

.

𝑅
 q . δwo )dx.dy 

qz(x,y) – lateral load per unit area 

Fn- Normal force component per unit area 

Fns, Fnz - Tangential force components along x and y directions per unit area respectively 

un, us and w- Normal, tangential and vertical deflections along the respective directions. 

By substituting δwiandδwein the virtual work equation, δwi + δwe = 0 and equating the 

terms independently to zero, the governing differential equations for FSDT are obtained as, 
𝜕²𝜓𝑥

𝜕𝑥² 
+(

1−µ

2
 )  

𝜕²𝜓𝑥

𝜕𝑦² 
 + (

1+µ

2
 ) 

𝜕²𝜓𝑦

𝜕𝑥𝜕𝑦
 - 

6(1−µ)𝑘 ²

ℎ²
 (ψx + 

𝜕𝑤

𝜕𝑥 
 ) = 0  

𝜕²𝜓𝑦

𝜕𝑦² 
+(

1−µ

2
 )  

𝜕²𝜓𝑦

𝜕𝑦² 
 + (

1+µ

2
 ) 

𝜕²𝜓𝑥

𝜕𝑥𝜕𝑦
 - 

6(1−µ)𝑘 ²

ℎ²
 (ψy + 

𝜕𝑤

𝜕𝑦 
 ) = 0 

G(z)hk²[
𝜕²𝑤

𝜕𝑥² 
 + 

𝜕²𝑤

𝜕𝑦² 
  + (

𝜕𝜓𝑥

𝜕𝑥 
 + 

𝜕𝜓𝑦

𝜕𝑦 
 )] + qz(x,y)  = 0 

In order to satisfy loading and boundary condition, the displacement and rotation are in 

the form of  

w (x,y) = ∑ ∑ wmn∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

ψx  =∑ ∑ Amn∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

ψy  =∑ ∑ Bmn∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

The value of wmn is obtained by solving the above equations. 
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wmn=
{1+ 

D(z)

k2G(z)h 
((

mπ

a
)

2
+ (

nπ

b
)

2
)}

D (z)((
mπ

a
)

2
+ (

nπ

b
)

2
)²

qmn 

Then the expression for deflection is given by, 

w(x,y)=∑ ∑
qmn∗K

D(z)[(
mπ

a
)

2
+ (

nπ

b
)

2
]

2
∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

where K=1 +  
D(z)

k2G(z)h 
((

mπ

a
)

2

+  (
nπ

b
)

2
) 

The strain fields of FGM plates are given by, 

εx=  
z+ Q11 

D(z)
∑ ∑

qmn(
mπ

a
)

2
∗K

[(
mπ

a
)

2
+  (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 sin

mπx

a
sin

nπy

b
 

εy= 
z+ Q11 

D(z)
∑ ∑

qmn(
nπ

b
)

2
∗K

[(
mπ

a
)

2
+  (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1  sin

mπx

a
sin

nπy

b
  

γxy=
−2(z+ Q11)

D(z)
∑ ∑

qmn(
mπ

a
)(

nπ

b
)∗K

[(
mπ

a
)

2
+ (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 cos

mπx

a
cos

nπy

b
 

The stress fields of FGM plates are given by, 

σx= 
12(z+Q11)

ℎ³
∑ ∑

qmn[(
mπ

b
)

2
+μ(

nπ

a
)

2
]∗K

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1  sin

mπx

a
sin

nπy

b
 

σy=
12(z+Q11)

ℎ³
∑ ∑

qmn[(
nπ

b
)

2
+μ(

mπ

a
)

2
]∗K

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1  sin

mπx

a
sin

nπy

b
 

τxy=
−12(z+Q11)

ℎ³
∑ ∑

(1−µ)qmn(
mπ

a
)(

nπ

b
)∗K

[(
mπ

a
)

2
 + (

nπ

b
)

2
]²

∞
𝑛=1

∞
𝑚=1 cos

mπx

a
cos

𝐧𝛑𝐲

𝐛
 

where Q11 is the integration constant. 

C. Dynamic Analysis 

 For thin plates vibrating at higher modes shear deformation effects are.The expression 

for kinetic energy can be written as, 

KE=∫ ∫ ∫
ρ(z)

2

h/2

z=−h/2

.

R
[(

∂u

∂t
)2+(

∂v

∂t
)2+(

∂w

∂t
)2]dz.dx.dy 

Total potential energy can be written as, 

TPE= ∫ ∫ ∫
1

2

h/2

z=−h/2

.

R
[ σx .εx+ σy .εy+ τxy.γxy + τxy.γxy + τyz.γyz+ τxz.γxz]dz.dx.dy -∫ ∫ 𝑞 . 𝑤

𝑏

0

𝑎

0
 dx.dy 

By using Hamilton’s principle [7], 

∫ δ
t2

t1
(KE- TPE) dt = 0 

δ = Variation of energy with respect to x and y only 

t1and t2 =values of time variable at the start and end of the time interval. 

The governing differential equations are given as, 

-D(z) [
∂⁴w

∂x⁴
 + 2

∂⁴w

∂x² ∂y²
+ 

∂⁴w

∂y⁴
 ] W(x,y)  +

ρh³

12
∇2ω² W(x,y) + ρ(z)hω²  W (x,y) = 0 

Natural frequency,( ω)  =   
√

D(z)

ρ(z)h
 ( π² {

m²

a²
 +

n²

b²
 })

(
h²

12
{

m2

a2  +
n2

b2}+1)
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IV. FINITE ELEMENT METHOD 

The numerical technique which is used to find out the approximate solutions in terms of 

partial differential equations for the boundary value problem is the Finite element analysis 

(FEA). FEA is applied in engineering as a computational tool in which a complex problem is 

subdivided into smaller and simpler parts called finite elements by the mesh generation 

technique. 

 

A.  Finite element modeling of FGM plate using ANSYS 15.0 

 The simply supported rectangular FGM plates subjected to lateral load was analyzed 

using the commercially available software ANSYS APDL [5].The element chosen for this 

analysis is shell 63, which is a four-nodded linear elastic structural shell having both bending 

and membrane capabilities. 

 

B. ANSYS Model 

 The FGM square and rectangular plates along with its deformation profile are shown 

in Figures 5 and 6 respectively. 

 
Fig.5FGM Square Plate and its Deformation Profile 

 

 
Fig. 6FGM Rectangular Plate and its Deformation Profile 

 

V. RESULTS AND DISCUSSIONS 

For the numerical calculations, FGM plate consisting of ceramic (Alumina) at the top 

layer and metal (Aluminium) at the bottom layer subjected to a uniform pressure of 

100kN/m² and mid-point load of 100kN were considered. The constant Poisson’s ratio of 0.3 

was assumed for both ceramic and metal and the Young’s modulus of the FGM plate bottom 

surface which consists of metal is 70GPa, whereas the top surface which consists of ceramic 

is 380GPa. The constant length of 1m was considered and the aspect ratio (i.e. length to 

width ratio) was varied as 1, 2 and 4 respectively. For all the above combinations, the 

thickness of the plate was also changed as 0.01m, 0.02m and 0.05m respectively. 

Throughout the analysis, the volume fraction (ratio of volume of metal to volume of 

ceramic) was varied from zero to two with an increment of 0.2. Then, the analytical 
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solutions of the square and rectangular FGM plates obtained by CPT and FSDT were 

compared with the numerical results of APDL finite element model. 

 

A. Simply Supported Square and Rectangular FGM Plate Subjected to UDL using CPT 

The non-dimensional mid-plane displacement values for the FGM plates having various 

power law indices (p), aspect ratios (a/b) and thickness (h) were tabulated in Table 1. 

 

TABLE. 1 NON-DIMENSIONAL MID-PLANE DISPLACEMENT(w/h) 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 a/b =4 

a/b 

=1 a/b =2 a/b =4 a/b =1 a/b =2 

a/b 

=4 

0 1.19 0.19 0.01 0.07 0.01 0.001 0.001 0.0003 0.00 

0.2 1.33 0.21 0.01 0.08 0.01 0.001 0.002 0.0003 0.00 

0.4 1.48 0.23 0.02 0.09 0.01 0.001 0.002 0.0003 0.00 

0.6 1.65 0.26 0.02 0.10 0.01 0.001 0.002 0.0004 0.00 

0.8 1.83 0.29 0.02 0.11 0.01 0.001 0.002 0.0004 0.00 

1.0 2.01 0.32 0.02 0.12 0.02 0.001 0.003 0.0005 0.00 

1.2 2.21 0.35 0.03 0.13 0.02 0.001 0.003 0.0005 0.00 

1.4 2.42 0.38 0.03 0.15 0.02 0.002 0.003 0.0006 0.00 

1.6 2.63 0.42 0.03 0.16 0.02 0.002 0.004 0.0006 0.00 

1.8 2.85 0.45 0.03 0.17 0.02 0.002 0.004 0.0007 0.00 

2.0 3.08 0.49 0.04 0.19 0.03 0.002 0.004 0.0007 0.00 

It was noticed that, the mid-plane displacement increases with increase in volume 

fraction of the plate, because of increase in the metal content. Since stiffness of the metal is 

less compared to that of ceramic, increase in metal content leads to increase in deflection 

value. But the deflection decreases with increase in thickness of the plate. Irrespective of 

thickness of the plate the deflection decreases, when the aspect ratio increases. The results 

obtained from CPT, FSDT and ANSYS excellently agree with the results obtained from 

Navier-type three dimensional solution [6] for the FGM square plate with volume fraction 

(p=0) and thickness 0.01m. Hence, it was inferred that ceramic plates show lesser 

displacement values compared to that of metal plate. The comparison of CPT, FSDT and 

ANSYS results showed that the deviation of results were within 3%. 

The non-dimensional normal stresses in x-direction and y-direction were tabulated in 

Tables 2 and 3 respectively.It was observed that fully ceramic plates give the smallest 

normal stress values. The normal stressesσxandσy increased with increase in the volume 

fraction but decreased with increase in aspect ratio and thickness of the plate. Since 

bending stiffness of the ceramic is more compared to metal, fully metallic plates give 

largest value of normal stress [5].As the plate becomes more and more metallic, the 

normal stress (σy) showed greater value than the corresponding value of normal stress 

(σx).  
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TABLE. 2NON-DIMENSIONAL NORMAL STRESS(
σ𝑥∗ℎ

𝑎∗𝑞
) IN X-DIRECTION 

 h=0.01m h=0.02m h=0.05m 

P 

a/b 

=1 

a/b 

=2 

a/b 

=4 

a/b 

=1 

a/b 

=2 a/b =4 a/b =1 a/b =2 

a/b 

=4 

0 29.5 8.7 2.0 16.0 4.3 1.0 6.4 1.7 0.4 

0.2 31.3 8.7 2.0 16.2 4.4 1.0 6.5 1.7 0.4 

0.4 32.8 8.9 2.0 16.4 4.4 1.0 6.6 1.8 0.4 

0.6 33.4 9.0 2.1 16.7 4.5 1.0 6.7 1.8 0.4 

0.8 34.1 9.2 2.1 17.0 4.6 1.1 6.8 1.8 0.4 

1.0 34.8 9.4 2.1 17.4 4.7 1.1 7.0 1.9 0.4 

1.2 35.5 9.6 2.2 17.7 4.8 1.1 7.1 1.9 0.4 

1.4 36.2 9.8 2.2 18.1 4.9 1.1 7.2 2.0 0.4 

1.6 36.9 10.0 2.3 18.5 5.0 1.1 7.4 2.0 0.5 

1.8 37.6 10.2 2.3 18.8 5.1 1.2 7.5 2.0 0.5 

2.0 38.3 10.4 2.4 19.2 5.2 1.2 7.7 2.1 0.5 

 

TABLE. 3NON-DIMENSIONAL NORMAL STRESS(
σy∗ℎ

𝑎∗𝑞
) IN Y-DIRECTION 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 

a/b 

=4 a/b =1 

a/b 

=2 a/b =4 a/b =1 a/b =2 

a/b 

=4 

0 29.5 17.0 5.6 16.0 8.5 2.8 6.4 3.4 1.1 

0.2 31.3 17.1 5.6 16.2 8.5 2.8 6.5 3.4 1.1 

0.4 32.8 17.4 5.7 16.4 8.7 +2.8 6.6 3.5 1.1 

0.6 33.4 17.7 5.8 16.7 8.8 2.9 6.7 3.5 1.2 

0.8 34.1 18.0 5.9 17.0 9.0 3.0 6.8 3.6 1.2 

1.0 34.8 18.4 6.0 17.4 9.2 3.0 7.0 3.7 1.2 

1.2 35.5 18.8 6.2 17.7 9.4 3.1 7.1 3.8 1.2 

1.4 36.2 19.2 6.3 18.1 9.6 3.1 7.2 3.8 1.3 

1.6 36.9 19.5 6.4 18.5 9.8 3.2 7.4 3.9 1.3 

1.8 37.6 19.9 6.5 18.8 10.0 3.3 7.5 4.0 1.3 

2.0 38.3 20.3 6.6 19.2 10.1 3.3 7.7 4.1 1.3 

The non-dimensional shear stress variation for different values of volume 

fractions, aspect ratios and thickness was tabulated in Table4.  

TABLE.4NON-DIMENSIONAL SHEAR STRESS(
τxy∗ℎ

𝑎∗𝑞
) 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 a/b a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 a/b 
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=4 =4 

0 17.3 5.5 1.0 8.6 2.8 0.5 3.5 1.2 0.2 

0.2 17.4 5.6 1.0 8.7 2.8 0.5 3.5 1.1 0.2 

0.4 17.7 5.7 1.0 8.8 2.8 0.5 3.6 1.2 0.2 

0.6 18.0 5.8 1.0 9.0 2.9 0.5 3.6 1.2 0.2 

0.8 18.3 5.9 1.0 9.2 2.9 0.5 3.7 1.2 0.2 

1.0 18.7 6.0 1.0 9.4 3.0 0.5 3.8 1.2 0.2 

1.2 19.1 6.1 1.1 9.6 3.1 0.5 3.8 1.2 0.2 

1.4 19.5 6.2 1.1 9.8 3.1 0.5 3.9 1.3 0.2 

1.6 19.9 6.4 1.1 9.9 3.2 0.6 4.0 1.3 0.2 

1.8 20.3 6.5 1.1 10.1 3.2 0.6 4.1 1.3 0.2 

2.0 20.6 6.6 1.1 10.3 3.3 0.6 4.1 1.3 0.2 

It was observed that smallest shear stress values occurs when the plate is of fully 

ceramic. The increase inshear stress increases with volume fraction and decreases with 

increase in aspect ratio and thickness because the FGM platestiffnessdecreases. Mostly 

ductile materials like aluminium fail in shear. Ductility increases by increasing the volume 

fraction, also increases the shear stress value. 

The normal strain (εx and εy) variations in x and y direction and shear strain variation 

(γxy) were tabulated in Tables 5, 6 and 7 respectively. 

 

TABLE. 5 NORMAL STRAINS(εx) IN X-DIRECTION 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 

a/b 

=4 a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 

a/b 

=4 

 *10-4 *10-5 *10-6 *10-4 *10-5 *10-6 *10-5 *10-6 *10-7 

0 5.90 9.44 8.17 1.48 2.36 2.04 2.36 3.78 3.27 

0.2 5.95 9.52 8.24 1.49 2.38 2.06 2.38 3.81 3.29 

0.4 6.04 9.66 8.36 1.51 2.42 2.09 2.42 3.87 3.34 

0.6 6.15 9.84 8.51 1.54 2.46 2.13 2.46 3.94 3.41 

0.8 6.27 1.00 8.68 1.57 2.51 2.17 2.51 4.02 3.47 

1.0 6.40 1.02 8.86 1.60 2.56 2.22 2.56 4.10 3.55 

1.2 6.54 1.05 9.05 1.63 2.61 2.26 2.61 4.18 3.62 

1.4 6.67 1.07 9.23 1.67 2.67 2.31 2.67 4.27 3.69 

1.6 6.80 1.09 9.41 1.70 2.72 2.35 2.72 4.35 3.76 

1.8 6.93 1.11 9.59 1.73 2.77 2.40 2.77 4.43 3.84 

2.0 7.06 1.13 9.77 1.76 2.82 2.44 2.82 4.52 3.91 

 

TABLE. 6NORMAL STRAIN (εy) IN Y-DIRECTION 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 a/b =4 
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 *10-4 *10-4 *10-4 *10-4 *10-5 *10-5 *10-5 *10-5 *10-6 

0 5.90 3.78 1.31 1.48 9.44 3.27 2.36 1.51 5.23 

0.2 5.95 3.81 1.32 1.49 9.52 3.29 2.38 1.52 5.27 

0.4 6.04 3.87 1.34 1.51 9.66 3.34 2.42 1.55 5.35 

0.6 6.15 3.94 1.36 1.54 9.84 3.41 2.46 1.57 5.45 

0.8 6.27 4.02 1.39 1.57 1.00 3.47 2.51 1.61 5.56 

1.0 6.40 4.10 1.42 1.60 1.02 3.55 2.56 1.64 5.67 

1.2 6.54 4.18 1.45 1.63 1.05 3.62 2.61 1.67 5.79 

1.4 6.67 4.27 1.48 1.67 1.07 3.69 2.67 1.71 5.91 

1.6 6.80 4.35 1.51 1.70 1.09 3.76 2.72 1.74 6.02 

1.8 6.93 4.44 1.53 1.73 1.11 3.84 2.77 1.77 6.14 

2.0 7.06 4.52 1.56 1.76 1.13 3.91 2.82 1.81 6.25 

 

TABLE. 7 SHEARSTRAIN (γxy) 

 h=0.01m h=0.02m h=0.05m 

P a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 a/b =4 a/b =1 a/b =2 a/b =4 

 *10-4 *10-4 *10-4 *10-4 *10-5 *10-5 *10-5 *10-5 *10-6 

0 7.87 2.52 4.38 1.97 6.34 1.11 3.20 1.05 1.99 

0.2 1.03 3.30 5.72 2.58 8.28 1.45 4.17 1.36 2.53 

0.4 1.30 4.36 7.23 3.26 1.05 1.83 5.26 1.71 3.13 

0.6 1.59 5.10 8.84 3.98 1.28 2.23 6.42 2.08 3.76 

0.8 1.88 6.02 1.04 4.70 1.51 2.62 7.56 2.44 4.39 

1.0 2.14 6.86 1.19 5.36 1.72 2.99 8.62 2.78 4.96 

1.2 2.36 7.56 1.31 5.91 1.89 3.29 9.49 3.06 5.44 

1.4 2.53 8.09 1.40 6.32 2.02 3.52 1.01 3.27 5.80 

1.6 2.63 8.42 1.46 6.58 2.11 3.66 1.06 3.40 6.02 

1.8 2.68 8.58 1.49 6.71 2.15 3.73 1.08 3.46 6.12 

2.0 2.69 8.60 1.50 6.72 2.15 3.73 1.08 3.47 6.12 

Increase in volume fraction leads to increase in normal strain, but it decreases when the 

aspect ratio and thickness of the plate increases. Since the stiffness of ceramic is high 

compared to that of metal, metal plate gives larger strain value. As the volume fraction 

increases, the difference in value for normal strain(εx) increases, but the normal strain(εy) 

decreases. The comparison of CPT, FSDT and ANSYS results showed that the deviation was 

within 2%. 

The non-dimensional natural frequency values were tabulated in Table 8. 

 

TABLE. 8 NON-DIMENSIONAL NATURAL FREQUENCY(ω̅) 

P a/b=1 a/b=2 a/b=4 

0 11.77 29.43 100.08 
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0.2 11.34 28.36 96.44 

0.4 10.93 27.32 92.91 

0.6 10.53 26.32 89.50 

0.8 10.14 25.36 86.24 

1 9.78 24.45 83.14 

1.2 9.43 23.59 80.56 

1.4 9.11 22.78 77.46 

1.6 8.81 22.02 74.89 

1.8 8.53 21.32 72.50 

2 8.27 20.67 70.29 

 

Increase in volume fraction leads to decrease in natural frequency, but it increases 

with increase in aspect ratio and thickness of the plates. Since the natural frequency is 

directly proportional to stiffness, increase in volume fraction decreases the stiffness value 

which also decreases the natural frequencies. The natural frequency increases with 

increase in the aspect ratio, because of the decrease in the width of the FGM plate. 

In the same manner, the various parameters like non-dimensional mid-plane 

displacements, non-dimensional stresses, strains and non-dimensional natural frequencies 

were found for square and rectangular simply supported FGM plates subjected to mid-point 

load by CPT, FSDT as well as ANSYS. It was observed that the results of square and 

rectangular plates subjected to mid-point load was two times that of the same plate 

subjected to uniform pressure. 

VI. CONCLUSIONS 

In this paper, the investigations were made on the square and rectangular simply 

supported FGM plates by using CPT, FSDT and ANSYS. The effect of volume fractions, aspect 

ratios, various thickness, support conditions, loading conditions on static and dynamic 

parameters were analysed. The static parameters considered were non-dimensional mid-

plane displacements, non-dimensional stresses and strains where the dynamic parameter 

considered was non-dimensional natural frequencies. It was found that the response of the 

simply supported square and rectangular FGM plates obtained from CPT, FSDT and ANSYS 

was intermediate to that of fully ceramic plate and fully metallic plate. It was also observed 

that as the volume fraction increases, the FGM plate stiffness decreases. Hence increase in 

the volume fraction, increases the static parameter values, but decreases the dynamic 

parameter values. From the investigations, it was observed that the deflections, stresses, 

strains and natural frequencies were highly dependent on the volume fraction. The 

numerical results obtained from the various plate theories such as CPT, FSDT and ANSYS 

simulation were compared with the results published in the literatures.  
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