
Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3031

Development Of AI Chatbot To Learn Programming

1Arthika Maria Roy G, 2Nikithaa S, 3Jayanth Akash V E, 4Dinesh Kumar S, 5Koushik Karan G

N, 6Subashini G

1Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

arthikamaria@gmail.com

2Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

nikithaa951@gmail.com

3Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

jayanthakash.ve @gmail.com

4Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

s.dinesh2613@gmail.com

5Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

koushikkaran6@gmail.com

6Dept. of Robotics and Automation

PSG College of Technology

Coimbatore, India

suba.rae@ psgtech.ac.in

Abstract

With advancements made in the field of Artificial Intelligence, development of AI- powered chatbots that possess

communication capabilities just like humans have been developed. Chatbots are based on techniques like Natural Language

Processing that can understand the queries put forth by users and respond with them appropriately via a User Interface.

They possess the ability to analyze data more accurately, thereby providing the right information to the user. This paper

mailto:arthikamaria@gmail.com
mailto:nikithaa951@gmail.com
mailto:s.dinesh2613@gmail.com
mailto:koushikkaran6@gmail.com

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3032

deals with the development of AI Chatbot using RASA which helps users learn about programming. RASA is a tool to develop

and build custom AI chatbots with the help of Natural Language Understanding (NLU).

Keywords—NLU, RASA, AI chatbot, Programming.

I. INTRODUCTION

Chatbot is a kind of software application used to communicate or interact with humans either

through text or by speech, thereby providing direct communication with a human agent. AI chatbots

serve as online communication tools through which humans can communicate effectively instead of

waiting for human responses. The chatbot classifications are based on various criteria, such as the

area of expertise they refer to or service they provide [1]. They are widely used for various purposes

like request processing, information gathering, customer service, educational assistance and so on.

Chatbots can be embedded and used through any messaging application like Facebook messenger,

Telegram, WhatsApp, Line, WeChat or can be used as virtual assistants like Alexa and Siri. They have

the ability to interact with humans at all times of the day and not limited to any constraints like time

or location. It reduces manpower in various businesses and help humans work effectively. Chatbots

are used to recommend sights, hotels, hospitals, fun activities, and even travel plans [2]. Chatbots are

an intelligent system being developed using artificial intelligence and natural language processing

algorithms. AI-powered chatbots mimic human conversation and can identify the intent behind a

person’s query with the help of Natural Language Processing [3] Chatbots have an effective User

Interface which makes it easy for humans to communicate and interact effectively. These AI agents

have increasingly occupied several roles in Human Machine Communication and have become more

socially compatible. They aid in effective online interaction with humans either through voice, text or

sometimes even both. Design of the chatbot’s functional framework introduces the theories of RASA

NLU and also integrates RASA NLU along with neural network (NN) methods to implement it with the

help of entity extraction and recognition [4]. Natural Language Processing is an advanced technique

used for understanding human queries automatically by dividing the text into smaller parts. Besides

many applications, chatbots are functionally helping in multiple horizons like educational information,

schedule information for any lecture courses and grade information [5]. Chatbots are split into

different categories based on knowledge, goal, service and response generated. Goal based chatbots

are generally given a primary task to achieve like customer interactions. Knowledge based chatbots

access the underlying data resources and respond to users appropriately. The developed chatbot is to

solve programming interrogations put forth by users in an effective manner without human

intervention. Study on both RASA and Botkit indicate that RASA would be more suitable for chatbot

development [6]. Thus, RASA was used in the development of AI chatbot to help users learn

programming.

II. RASA

RASA is an open-source ML structure to automate conversations with humans. With RASA, anyone

can construct and develop provisional assistants on platforms such as Facebook Messenger, Telegram,

and also vvoice assistants like Alexa Skills. RASA enables us to build assistants that can provide

meaningful contextual conversations with humans. RASA has two modules: One is RASA NLU and the

other one is RASA Core. RASA NLU is used for understanding user messages. It is also a part of RASA

Open Source that executes entity extraction, intent classification, and response retrieval that helps in

building intuitive chatbots. RASA NLU is utilized to comprehend language for chatbots and Artificial

Intelligence assistants, and it majorly focuses on intent classification and entity extraction. RASA Core

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3033

is used for holding discussions and determining what has to be done next. RASA X is a provision in

RASA that assists one construct, develop, and establish Artificial intelligence Assistants from the RASA

framework. RASA X comprises of a user interface and a REST API and is the latest release from RASA.

RASA NLU is where RASA tries to find user texts and tries to identify intent and entity in that text or

message. RASA Core helps with contingent message flow. On the basis of the user message, it can

trigger RASA Action Server and can predict dialogue as a reply.

With RASA, personalized, automated interactions can be created. It dispenses supple

conversational Artificial intelligence for constructing text-based and voice-based assistants and it is

widely used by developers, conversational teams, and enterprises. RASA virtual assistant is a flexible

architecture that allows to control access to data and deploys on our own infrastructure. It is used and

believed by companies in healthcare, banking, and other organizations that are working under strict

protocols in order to warrant compliance and support privacy standards. The training data, as well as

models in RASA is completely controlled by the developer and it is not shared. Besides, it provides

multi-channel customer occurrences that consists of ten built-in messaging channels, and endpoints

for custom channels. The other features include the high-performance architecture and versatile,

reusable infrastructure. RASA’s strong architecture meets the excess traffic command, without

pressurizing on human assistive agents. Moreover, the technology in RASA is transferable across use

cases. reply.

A. RASA X and NLU

The free toolset RASA X is utilized to develop virtual assistants constructed with the help of RASA

Open Source. Combinedly, they comprise of all the attributes to generate robust text-based and voice-

based chatbots and assistants. The major features of RASA include extracting synonyms from

messages, holding complex conversations, providing interactive learning and integrating API calls. It

provides the facility of turning free text in any language into organized data and also assists numerous

intents and both pre-trained and custom entities. Besides, it is a completely custom NLU for any

industry. Moreover, it retains crucial content and detains front-and-back conversations using Machine

learning based dialogue management and handles topic changes in a smooth manner, integrates logic

of business into discussion flows. In addition to it, with RASA, it is possible to create training data by

conversing with the assistant, and dispense response or comment when a mistake or error is made.

Custom actions in RASA can be used to interact with APIs, databases, and other systems, and also

bridge with apprehension bases, context management systems, and CRMs.

B. RASA File System

The domain.yml file contains all the chatbot intents, entities, slots, and responses predefined which

is used to respond to users. This file represents the chatbot's domain of information. The RASA CORE

"policy" and RASA NLU "pipeline" are defined in the config.yml file. The pipeline consists of a list of

NLU components.

Policies are a combination of rule-based guidelines and machine learning. TED policies are used to

identify entities and predict suboptimal actions. Memoization policy attempts to match the stories

described in the training data, and when it finds that story, which predicts the next action from the

matching story.

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3034

The actions.py contains ’action’ classes, each of the action classes defines two methods which are

name and run, name method is to return the name of that action and the run method is to execute

what the developer wants the chatbot to execute. Anything that the chatbot should do will be defined

in the actions class.

The data folder contains three .yml files: nlu, stories, and rules. These three files contain the data

necessary for the training of chatbot. The NLU file contains sample text for each entity. The rules file

contains a combination of intent and action. The order in which the intents and actions are listed in

this file is the order in which these responses are executed. The story is like a rule. However, stories

are primarily used to represent start and end goals. Stories are used to identify related conversations

and predict appropriate actions at run time.

C. Custom Action

A custom action allows the user to run any code of user’s choice, including Application

Programming Interface calls, queries of database etc. They have the ability of turning on lights, adding

an event to a calendar, checking of a user's bank balance, or anything else that can be imagined. Any

custom action that is to be used in stories should be added into the actions section of the domain.

When a custom action to be executed is forecasted by the dialogue engine, it calls the action server

and it must respond with a record of events and responses.

D. Forms

A form is defined by adding it to the forms section in domain. The name of the form is same as the

name of the action which can be used in stories to manage form executions. Slot mappings for each

slot in which the form should fill should be defined as well. One or more slot mappings for each and

every slot can be specified accordingly.

The corresponding example in fig 1 phone_form describes the forms provided in domain.yml file

along with various entities.

Fig. 1. Forms provided in domain.yml file

E. Slots

As soon as the form action gets called for the first time, the form gets activated instantly and the

user will be enquired for the next required slot value. It is done by searching for a response named

utter_ask_<form_name><slot_name> or if the former is not found, utter_ask<slot_name>. These

responses must be defined in the domain file for each required slot. A story or rule should be added

to activate a form, which indicates when the form should be run by the assistant. On the other hand,

once all needed slots are filled, the form gets deactivated automatically.

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3035

III. METHODOLOGY

The chatbot which is developed with RASA has a set of .yml files and python files to define the

working process of the chatbot. The methodology of creating the necessary data and training the data

is shown in fig. 2.

Fig. 2. Methodology of creation and training the data

A. Providing Data

1. nlu.yml

 NLU training data consists of sample user utterances categorized by intent. Training samples can

also include entities. An entity is a structured unit which is responsible for extracting the information

from the user's message. The developer can also add additional information to the training data, such

as regular expressions and lookup tables, so that the model recognizes intents and entities correctly.

Typically, the examples are listed one per line as in the fig. 3. In this project the basic topics of C

programming is added to the nlu.yml file with appropriate intents and few examples for training the

model.

Fig. 3. nlu.yml containing various intents and its examples

2. domain.yml

The domain.yml is a file which contains the intents and the entities provided in nlu.yml files. It also

contains all the necessary responses which the chatbot refers to as utters as shown in fig. 4.

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3036

Fig. 4. The response to an intent along with an image URL

It will also contain any python file which is used to access anything out of RASA for example

performing operations on a database or in this case to fetch the search results from stack overflow. It

can also contain any images which needs to be sent to the user under utters. domain.yml also contains

any forms, slots or action that is used in the chatbot as shown in fig. 5.

Fig. 5. Actions and slots in domain.yml

B. Arranging data into stories

Stories are also a type of training data which is used to train the dialog management model of the

chatbot. A story is a representation of a conversation between an AI assistant and a user, in which

user input is represented as an intent, and assistant responses and actions are translated into a specific

format that is represented as an action name. It is not necessary to deal with the specific content of

the message your users are sending as shown in fig 6. Instead, the developer can use the output of

the NLU pipeline.

Fig. 6. Stories file with different paths

C. Policies and Pipeline

IV. The configuration file defines the policies and elements that the model uses to make

predictions primarily based totally on the user’s input. The language and pipeline keys specify the

components used by the model to make the predictions of the NLU. Policy keys define the policies

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3037

used by the model to predict next action. The NLU pipeline has components that work in a particular

order to exercise input of the user and a systematic output. Specific pipelines used in this project are

listed below.

• WhitespaceTokenizer –For every whitespace set apart character sequence a token is created.

That is any character not in a-z,A-Z, 0-9_# @ & will be replaced with whitespace.

• RegexFeaturizer – For intent classification and object extraction this makes functionality. The

RegexFeaturizer in the format of training data brings about a catalogue of regular expressions.

To specify if the expression was established in the user’s message for individual regex a feature

is allotted and defined. To clarify classification all the corresponding functionality will be set

down into an entity extractor or an intent classifier.

• LexicalSyntacticFeaturizer – Create a function to extract entities. Move by sliding window on

each token in user's message and create function based on configuration. Since there is a

default configuration, you do not need to mention a profile.

• DIETClassifier –Used for entity recognition and intent classification DIET expanded as (Dual

Intent and Entity Transformer) is an architecture based on multitasking. For the dual tasks this

architecture is established on a transformer that is shared. With regard to the token input

sequence a series of entity tokens is forecasted through a CRF (conditional random field)

marker layer over the transformer output sequence. A vector space that is single semantic is

formed by the combination of label intents and the output of transformer for the overall

statement.

• EntitySynonymMapper –The same value will be mapped to that of the noticed entity values if

the synonyms are defined from the training data.

• ResponseSelector – Derived straight from a set of responses from the candidate the response

selector part is to create a response accession model that forecasts the bot’s response. The

forecasted response which are marked by the dialog manager is the cause of the predictions

in this certain model. Similar to the DIET classifier this model implants the response labels and

user input in the same area and maintains the exact optimization and the neural network

architecture.

There are certain policies and set of rules that the chatbot implements during each step of a

conversation.In the respective tandem that the chatbot can utilize there are certain machine

learning used. Given below are the policies which are implemented in this project.

• TED Policy – For forecasting next actions and acknowledging entities the Transformer

Embedding Dialogue (TED) policies a multitasking architecture are used. For tasks that involve

both, an architecture that constitute multiple transmitter encoders are utilized. In accordance

to the token input sequence the series of entity tags is forecasted by the CRF (Conditional

Random Field) that is a layer, tagging over the encoder output of the user sequence

transformer. The dialog transformer encoder output and the action label of the system are

implanted in a vector space that is single semantic as forecasted by the next action.

• MemoizationPolicy – The story that corresponds to the training data is recalled by the

MemoizationPolicy. The Stories.yml file and the respective story must be in relation to the

existing conversation. A confidence of 1.0 is derived from the story matched in the training

data as forecasted by the next action. A value of 0.0 for confidence along with "none" is

obtained if the match to the conversation is void .

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3038

A. Training the model

The next step is to train the model using the already created nlu.yml, domain.yml and stories.yml

using the command rasa train. The nlu.yml file is to train the NLU of the chatbot. Similarly, the

stories.yml file is to train the dialog model. This command will create a model folder and places the

trained model in that folder. The rasa train is the command which trains both the NLU and the Dialog

model of the chatbot.

If the directory already contains the model, only the modified parts of the model will be retrained.

The NLU or the dialog model can be trained individually with the commands run rasa train nlu or rasa

train core if there is any change the nlu.yml part or stories.yml alone.

B. Creating the custom actions

A custom action is an action that can run any code that the developer wants. This can be used to

make a query to a database, or an API call for this project. This project makes use of the API of stack

overflow to obtain the search results from stack overflow. The API is called stackapi which is used in

the python file actions.py. This file receives the data from the user through the entities and with the

help of the run function in the python file as shown in the fig. 7., the program will fetch the top three

search results from stack overflow. This action server is started using the command rasa run actions.

Fig. 7. actions.py

V. IMPLEMENTATION OF THE CHATBOT

In order to test the chatbot for its correction in delivering the proper message the chatbot can be

started in the command line interface using the command rasa shell as shown in the fig. 8.

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3039

Fig. 8. rasa shell

In order to implement the chatbot in telegram, a telegram bot is created using botfather and its

access code is generated and also it is necessary to tunnel the local host. This is done using ngrok

application which will tunnel the local host to another server which can be captured by the telegram

api. This access code and the webhook URL needs to be updated in the credentials.yml file as shown

in fig. 9.

Fig. 9. Credentials.yml

 After these changes in the credentials.yml file, it is required to start the RASA server from the local

machine using the command rasa run. This command will host the server in localhost:5005/webhook

which will be tunneled trough ngrok server to reach the telegram server.

 While the RASA server, RASA action server and ngrok are running, the chatbot can be accessed

from the telegram bot which was created earlier as shown in fig. 10.

Fig. 10. Chatbot implementation in telegram

Nat. Volatiles & Essent. Oils, 2021; 8(5): 3031-3040

3040

VI. CONCLUSION

The AI-powered chatbot has been implemented in telegram and it can answer all queries related to

C programming language that are put forth by the users. The developed bot can understand basic

questions on C language such as data types and respond via an image. For other complex queries it

tries to fetch top three results from stack overflow which is a website for professional and enthusiastic

beginners in programming. With the help of the top three search links provided by the chatbot, the

user can extract the necessary information and clear their doubts. The chatbot serves as an effective

learning tool for beginners and also provides the sufficient information by understanding the language

of humans. This is achieved by simply extracting keywords from the query and understanding it with

the help of Natural Language Processing.

VII. FURTHER WORK

Future work is to host the RASA server in a docker container which is an open-source software

development platform which permits packaging of application in containers that can be ported to any

system. Further, the chatbot is now capable of providing queries related to C programming. It can be

extended to other languages like Python, Java, C++ and so on. The developed Chatbot is capable of

interacting only through text which can be extended to make speech as an option to ease user

experience. Future work is to incorporate more programming languages and also make it more user

friendly and intuitive.

References

1. Eleni Adamopoulou, Lefteris Moussiades, “An Overview of Chatbot Technology”, “Artificial

Intelligence Applications and Innovations. IFIP Advances in Information and Communication

Technology, vol 584. Springer”, 2020.

2. Reem Alotaibi, Ahlam Ali, Haya Alharthi, Renad Almehamadi, “AI Chatbot for Tourism

Recommendations”, “International Journal of Interactive Mobile Technologies, Vol. 14, No.

19”, 2020.

3. Lalwani, Tarun Bhalotia, Shashank Pal, AshishRathod, Vasundhara Bisen, Shreya,

“Implementation of a Chatbot System using AI and NLP”, “International Journal of Innovative

Research in Computer Science & Technology (IJIRCST) Vol. 6, Issue-3”, 2018.

4. Anran Jiao, “An Intelligent Chatbot System Based on Entity Extraction Using RASA NLU and

Neural Network”, “IOP Conf. Series: Journal of Physics: Conf. Series 1487”,2020.

5. Yurio Windiatmoko, Ahmad Fathan Hidayatullah, Ridho Rahmadi, “Developing FB Chatbot

Based on Deep Learning Using RASA Framework for University Enquiries”, “IOP Conference

Series: Materials Science and Engineering, 1077”, 2021.

6. Md Imran Pavel, “Comparing Chatbot Frameworks: A Study of RASA and Botkit”, “Master’s

Thesis Faculty of Information Technology and Communication Sciences Supervisor: Zheying

Zhang”, May 2020

