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Abstract  
 A composite Active Disturbance Rejection Controller (ADRC) and Proportional Integral Derivative (PID) 
controller are designed and implemented for the stabilization of steel ball in a magnetic levitation 
(MAGLEV) system. The performance of the two controllers are analysed under two scenarios namely with 
and without disturbance. Simulation results prove the competence of composite ADRC and it outperforms 
conventional PID controller. Simulations were carried out in MATLAB. 
         
Keywords— ADRC, PID, MAGLEV, Composite controller, Disturbance rejection 

 
I.  INTRODUCTION 

        Magnetic levitation is a technique for suspending an item in the air using magnetic force. The goal 
here is to levitate the steel ball into a specific ball position. The control concern is to give a regulated 
current to the coil such that the magnetic force on the levitated body is exactly equal to the gravity force 
operating on it. As a result, without any control action, the magnetic levitation system is inherently 
unstable. It is desirable to not only lift the object, but also to keep it in a specific position or to follow a 
specific path. 
              A steel ball, photo emitters, photo receivers, and a ball post make up the magnetic levitation 
system. An electromagnetic force is created when electricity is delivered to the electromagnet, which 
causes the steel ball to hover in the air. There are three sections to the maglev system. An electromagnet 
composed of a solenoid coil with a steel core is located in upper part. The ball will be suspended in the 
central portion of the track[1]. The signal conditioning unit for the light intensity position sensor is the 
other portion. These photo emitters and photo receivers can be used to determine the ball's location. 
        There are several controllers created for magnetic levitation systems[6],[8],[16],[17] and one that 
provides the best results in the face of disturbances is particularly intriguing. An observer, specifically a 
disturbance observer, can assist with this. Disturbance accomodation control (DAC), Extended high gain 
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state observer (EHGSO), Active disturbance rejection control (ADRC), and other disturbance-observer-
based regulating strategies exist. As a result, it's clear that the rejection of disturbances and uncertainty 
is a crucial goal for control system design[2]. 

         The usage of disturbance as a prolonged state of the system that is subsequently cancelled by an 
observer's activity is a useful way to get better outcomes. Using a reduced order state observer rather 
than a full order observer will give you a solid notion of how to cancel out the influence of disturbances 
that affect the performance of the system[3]. 

         The controller design begins by focusing on settling time and peak overshoot as main issues. The 
design of PID-ADRC and the design of Reduced Extended State Observer are the primary components 
included in the controller design (RESO). The main principle is to model the system with an input 
disturbance that reflects any difference between the model and the actual system, including external 
disturbances; this input is then lumped into the term f, and it is assumed to be one of the system's states. 
An ESO's estimate of this condition can be employed in a control signal to adjust for actual plant 
disruption. The ADRC tuning process was first suggested in a nonlinear version. The structure was reduced 
to its simplest form, the tuning is basically a pole placement approach, and the required performance is 
accomplished indirectly through the placement of the closed loop poles. However, the ultimate selection 
of these poles becomes a trial-and-error technique that practising engineers may find challenging to 
completely comprehend and successfully apply to real-world systems[5], [7].[9],[10],[11],[12],[13],[15]. In 
current optimal control theory, the linear quadratic regulator is a well-known design method that has 
been widely applied in a variety of applications. Unlike the pole-positioning method, the desired 
performance objectives are directly addressed by reducing the quadratic function of the state and control 
input. [4]. The key contribution is to use the LQR methodology and decreased tuning parameters to 
achieve an optimal tuning of the ADRC method that guarantees some closed loop specifications  

 
 II.  SYSTEM MODELLING 

        The mechanical system, which controls the location of the ball by altering the coil current, and the 
electrical system, which controls the coil current by adjusting the coil voltage are the two subsystems. As 
a result, the coil voltage may regulate the ball's location. Fig. 1 illustrates a typical MAGLEV.   

 
 

Fig 1 MAGLEV system 
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The model of the MAGLEV is shown in Fig 2, Lc is the inductance of the electromagnetic coil, Mb is the 
mass of the steel ball, Rc is the resistance of the electromagnetic coil, Xb is the ball position and Fg is the 
gravitational force.  

The mathematical model of a magnetic levitation system is given as follows. The mathematical model 
of this electro-magnetic system is used to determine the transfer function of the system from which the 
performance of the system can be analysed. Applying Kirchhoff’s voltage law to the electrical circuit 
shown in Fig 2. 

 

        𝑉𝑐 = (𝑅𝑐 + 𝑅𝑠)𝐼𝑠 + 𝐿𝑐
𝑑

𝑑𝑡
𝐼𝑐                                           (1)                                                     

 
Applying Laplace transformation to obtain transfer function  

𝐺𝑐(𝑠) =
𝐼𝑐(𝑠)

𝑉𝑐(𝑠)
=

1

(𝑅𝑐+𝑅𝑠)+𝐿𝑐
                                                     (2)                           

 
So, 

𝐺𝑐(𝑠) =
𝐾𝑐

𝜏𝑐𝑠+1
                                                                        (3) 

 
Where              

 𝐾𝑐 =
1

(𝑅𝑐+𝑅𝑠)
 and 𝜏𝑐 =

𝐿𝑐

(𝑅𝑐+𝑅𝑠)
 

 
A.  Motion of ball 
The gravitational force on the ball is   
𝐹𝑔 = 𝑀𝑏𝑔                                                                              (4)                                                        

 
The force generated by electromagnet is  

𝐹𝑐 = −
1

2
𝐾𝑚

𝐼𝑐
2

𝑋𝑏
2                                                                     (5) 

So the total force experienced by the ball can be expressed as        𝐹𝑔 + 𝐹𝑐 == 𝑀𝑏𝑔 −
1

2
𝐾𝑚

𝐼𝑐
2

𝑋𝑏
2                                                 

(6) 
 
Finally, the nonlinear motion of the ball is expressed by applying Newton’s second law  

𝑑2𝑋𝑏

𝑑𝑡2 = −
1

2

𝐾𝑚𝐼𝑐
2

𝑋𝑏
2 + 𝑔                                                  (7) 

 
Setting all time derivative terms to zero at equilibrium point. 

−
1

2

𝐾𝑚𝐼𝑐
2

𝑋𝑏
2 + 𝑔 = 0                                                    (8) 

At equilibrium, coil current 𝐼𝑐0 can be expressed as (8) as a function of 𝑋𝑏0 and 𝐾𝑚 

𝐼𝑐0 = √
2𝑀𝑏𝑔

𝐾𝑚
𝑋𝑏0                                                   (9) 

 
The electromagnet force constant 𝐾𝑚 , can be obtained using equation (8) as 

𝐾𝑚 =
2𝑀𝑏𝑔𝑋𝑏0

2

𝐼𝑐0
2                                                  (10) 
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Fig 2. Schematic representation of the MAGLEV plant 

 
The nominal coil current 𝐼𝑐0 can be obtained at the static equilibrium point.  
 
B.   Linearization of motion 
 The system must be linearized around the equilibrium point where the ball suspension occurs in order 
to construct a linear controller. Taylor's series is used to linearize the nonlinear system equations around 
the operational point. Applying Taylor’s series approximation  to equation (8) to obtain 
 

     
𝑑2𝑋𝑏1

𝑑𝑡2 = −
1

2

𝐾𝑚𝐼𝑐0
2

𝑀𝑏𝑋𝑏0
2 + 𝑔 +

𝐾𝑚𝐼𝑐0
2𝑋𝑏1

𝑀𝑏𝑋𝑏0
3 −

𝐾𝑚𝐼𝑐0𝐼𝑐1

𝑀𝑏𝑋𝑏0
2                (11)   

                      
Substitute equation (10) in (11) 

   
𝑑2𝑋𝑏1

𝑑𝑡2 =
2𝑔𝑋𝑏1

𝑋𝑏0
−

2𝑔𝐼𝑐1

𝐼𝑐0
                                                   (12) 

 
Applying Laplace transform to (12)  

     𝐺𝑏(𝑠) = −
𝐾𝑏𝜔𝑏

2

𝑠2−𝜔𝑏
2                                                       (13) 

 

where 𝐾𝑏 =
𝑋𝑏0

𝐼𝑐0
 and 𝜔𝑏 = √

2𝑔

𝑋𝑏0
       

 
 Therefore, the open loop transfer function of a maglev system is a type zero, second order system. 
The two open loop poles of the system are located at  𝑠 = ±𝜔𝑏.  
 In this work, a ADRC is designed not only to levitate the ball but also to follow the desired trajectory 
even when disturbances are applied. 
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Table 1. PARAMETERS OF THE MAGNETIC LEVITATION SYSTEM[14] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

III. COMPOSITE ADRC DESIGN 
The composite ADRC general block diagram is as shown in Fig 3. 
 
 
A. ADRC design 
      Nonlinear system can be represented as  
𝑦(𝑡)𝑛 = 𝑓 + 𝑢1(𝑡)                                                              (14) 
 
Where f is the whole structural information of the system including disturbances, Where 𝑢1(𝑡) = �̂�𝑢(𝑡) 
is the control law and 
 𝑢1 = 𝑢0 − 𝑧𝑛                                                (15)  
With Zn being the extended state. 

Symbol Description Value Unit 

Lc Coil inductance 412.5 mH 

Rc Coil resistance 10 Ω 

Nc Number of turns 
in the coil wire 

2450  

lc Coil length 0.0825 M 

rc Coil steel core 
radius 

0.008 M 

Rs Current sense 
resistance 

1 Ω 

Km 
Electromagnet 
force constant 

6.5308E-
005  

N.m2/A2 

N.𝑚2/𝐴2 

𝑅𝑏 Steel ball radius 1.27E-002 M 

Mb Steel ball mass 0.068 Kg 

Kb Ball position 
sensor sensitivity 

2.83E-003 m/V 

G Gravitational 
constant 

9.81 

 

 

m/s2 

𝐼𝑐_𝑚𝑎𝑥 
Maximum 

continuous coil 
current 

3 A 
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Fig 3 Block Diagram of Composite ADRC 

 
On rearranging and simplification  (14),  
 
  𝑦(𝑡)𝑛 = 𝑢0(𝑡)                                                                (16)                                                                                                                                                                                
 
Where 

𝑢0(𝑡) = 𝑘𝑝𝑒(𝑡) + 𝑘𝑖 ∫𝑒(𝑡)𝑑𝑡 + 𝑘𝑑1

𝑑𝑒

𝑑𝑡
+ 

𝑘𝑑2�̈�(𝑡)+. . 𝑘𝑑𝑛−1
𝑒(𝑛−1)(𝑡)                                                (17)  

    
(17) is the general control law. With regard to system order, the equation changes. The number ‘n' 
represents the selected system's order. It is 3 in the case of a magnetic levitation 
. 
The tracking error is as. 
   e(t)=r–y(t)                                                                        (18)   
                                                                         
Set point reference r is  

  �̈� = −𝑦(𝑡)̈                                                                         (19)   
                                                                             

  𝑒(𝑡)𝑛+1 = −𝑢0(𝑡)̇                                                             (20)   
                                                                                                     
     

   �̇�(𝑡) = 𝐹𝑣(𝑡) + 𝐺𝑢0̇(𝑡)                                                  (21)    
                                                                                                                 
LQR formulation of the ADRC is  
    𝑢0̇(t) = -[𝑘1 𝑘2 𝑘3 …… . . 𝑘𝑛+1]                           (22)   
                                                                   
Gain values are 
       [𝑘𝑖 𝑘𝑝 𝑘𝑑1

𝑘𝑑2
… 𝑘𝑑𝑛−1] = 

       −[𝑘1 𝑘2 𝑘3 … 𝑘𝑛+1]                                        (23)    
                                             
P matrix is 
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 P=

[
 
 
 
 

𝑝11 𝑝12 𝑝13 … . 𝑝1,𝑛+1

𝑝12 𝑝22 𝑝23 … . 𝑝2,𝑛+1

𝑝13 𝑝23 𝑝33 … . 𝑝3,𝑛+1

… … … … . … .
𝑝1,𝑛+1 𝑝2,𝑛+1 𝑝3,𝑛+1 … . 𝑝1,𝑛+1]

 
 
 
 

                        (24)     

                                                                                                                          
 
Optimal feedback gain is  
K=𝜌−1𝐺𝑇𝑃                                                                         (25)  
                                                                        
B.   Optimal design 
       As previously stated, ADRC is based on the separation concept, which permits considering unknown 
dynamic and disturbances in a physical process as generalised disturbances, building an ESO to estimate 
them in real-time, and then cancelling their influence using the estimate as part of the control signal. 
 
In PID-ADRC method,  
�̇�(𝑡) = 𝐴𝑧(𝑡) + 𝐵𝑢1(𝑡) + 𝐿(�̇� − �̂�)                                   (26)   
                                                                                             
�̂� = 𝐶𝑧(𝑡).                                                                           (27) 
                                                                     
Replacing  A← AT , B← CT  and K ←LT  . 
 

   𝐽 = ∫ (𝑧(𝑡)𝑇𝑄0𝑧(𝑡) + 𝜌0𝑢1
2(𝑡))𝑑𝑡

∞

0
                                 (28)  

                                                                                           
   𝐴𝑀 + 𝑀𝐴𝑇 + 𝑄0 − 𝜌0

−1𝑀𝐶𝑇𝐶𝑀 =0                                (29) 
 
The subsystem for RESO is designed using the following extended state space equation. 

[
 
 
 
 
�̇�1

�̇�2

.

.
�̇�𝑛]

 
 
 
 

=

[
 
 
 
 
𝛽1 1 0 : 0
𝛽2 0 1 : 0
: : : : :
: : : : :

𝛽𝑛 0 0 0 0]
 
 
 
 

[
 
 
 
 
𝑧1

𝑧2

:
:

𝑧𝑛]
 
 
 
 

+

[
 
 
 
 
0
0
:
1
0]
 
 
 
 

𝑢1 +

[
 
 
 
 
𝛽1

𝛽2

:
:

𝛽𝑛]
 
 
 
 

�̇�            (30)                                                                 

 
Where 

𝑧 = [𝑧1 𝑧2 : : 𝑧𝑛]𝑇 = [�̂̇� �̂̈� : : 𝑓]𝑇 are extended states. 
𝛽1,𝛽2,… are observer gains. 
 
The optimal RESO gain is  

𝐿 = 𝜌0
−1𝑀𝐶𝑇 = [𝛽1 𝛽2 ……… . 𝛽𝑛]𝑇                         (31) 

 
     Because this is normally a high-frequency signal, a big number for observer gain will amplify the 
influence of measurement noise. A trade-off between response time and noise immunity is required. 
 

            IV.   RESULTS AND DISCUSSIONS 

A.  Open loop response of magnetic levitation system   
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          Giving direct input to the system and analysing its attributes is the open loop response of the system. 
To determine the process time constant, process gain, and process dead time, the open loop response 
test is utilised. Because the output is not feedback, it has no effect on the system's reaction. 

 
 

Fig. 4 Open loop response of magnetic levitation system 
From the open loop response shown in Fig 4, it is inferred that MAGLEV is inherently unstable and 

does not settle at any time. The answer is exponentially rising since there is only one right half pole. In the 
system, the ball will not maintain a position. 
 
B. Without disturbance 
       In comparison to the typical PID controller, which has some overshoot in the response, the composite 
ADRC controller produces a response with no overshoot. In terms of overshoot, Composite ADRC 
outperforms traditional ADRC as shown in Fig 5. 

 
Fig.5  Closed loop response without disturbance 

 
C. With disturbance 

In the face of a disturbance, Composite ADRC performs well. As a result, the final reaction is 
overshootless. PID provides a reasonable settling time but fails to eliminate overshoot. PID was unable to 
offer an optimal outcome after causing step disruption as shown in Fig. 6. 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3303-3313 

 

 

3311 

 

 
Fig.6 Closed loop response with step as disturbance 
 
D. With random disturbance 
       When compared to Composite ADRC, the PID controller's response becomes bad when random 
disturbance is introduced. In this situation, the precise disturbance rejection can be seen. As a result, as 
demonstrated in Fig 7, Composite ADRC is a better controller for disturbance rejection. 
 

 
Fig 7.Closed loop response with random disturbance 

 
V. CONCLUSION    
    
     In real time, most PID controllers are used, however the composite ADRC does not rely on the plant 
model and instead treats the disturbance as one of the states, which is then cancelled out by the Reduced 
Extended State Observer's subsequent action (RESO). PID has a poor reaction when diverse disturbances 
are applied to the system, especially when a random source is used as a disturbance. After setting the 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3303-3313 

 

 

3312 

 

desired specifications and comparing the two controllers, Composite ADRC provides a decent response 
without overshoot, whereas PID provides an overshoot response. As a result, the Composite ADRC 
provides a more accurate answer. The Composite ADRC has a settling time of 10 seconds, whereas the 
PID has a settling time of 2 seconds. When comparing Composite ADRC to standard ADRC, Composite 
ADRC produces superior results, with an ADRC response of 18 seconds, which is longer than Composite 
ADRC's. Despite the longer settling period, there is no overshoot in the presence of any disturbances. 
Overshooting occurs as a result of the PID controller. 
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