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Abstract 

The 𝐻∞ problem is explored in this study for stochastic genetic regulatory networks with Levy noise. A sufficient condition 

for this problem is obtained and described in terms of linear matrix inequalities (LMIs), which can be easily validated by 

Matlab LMI toolbox, using stability analysis and mathematical tools to examine the 𝐻∞ performance. Finally, a numerical 

example is provided to demonstrate the effectiveness of the proposed methods. 
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1 Introduction 

 

Genetic regulatory networks (GRNs) are molecular networks that are formed by networks of 

regulatory interactions between DNA, RNA, and proteins that inhibit the expression of other genes. 

It is generally recognized that noise can disrupt GRNs at multiple stages, including transcription, 

translation, transport, chromatin remodelling, and pathway-specific control. When a gene is 

transcribed, the transcription is regulated by a collection of transcription factors in the gene 

promoter system. Other gene transcription mechanisms can produce transcription factors, which 

further form a complicated network system [1, 2]. Maintaining the network system’s stability is 

necessary to the organism’s long-term survival. As a result, one of the main challenges in biological 

study is the stability of GRNs.  

To investigate a gene expression regulatory network, first establish a regulatory network 

model, and then examine the interactions between the genes in the model. The Boolean model, 

Petri net model and differential equation model are all well-known models of gene regulation. The 

differential equation model is one of the most extensively used which can effectively reflect the 

nonlinear dynamic behaviour of a biological system while also describing protein and mRNA 

concentration fluctuations.  

Many researchers have been interested in studying the stability of GRNs with time delays. 

Chen et.al [3] established a GRNs with time delays and derived the model’s necessary and sufficient 

conditions for stability. The uncertain GRNs for interval time delays addressed in [4]. The authors in 

[5, 6] discussed about the passivity performance of stochastic GRNs with time delays. Furthermore, 

numerous studies have contributed to the study of the Levy process see [7, 8, 9]. It is worth 

mentioning  that  there  are various results on the stability analysis of stochastic differential 
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equations with a Brownian motion in the existing literature. On the other hand, Brownian motion 

cannot be used to explain stochastic disturbances in many real systems. 

 

For example, rapid environmental changes create a significant issue, and their paths may not 

be continuous. As stochastic systems containing Levy noise are well-suited for explaining 

discontinuous systems. Levy processes are stochastic processes with independent and stationary 

increments that describe the motion of a point whose subsequent motions are random and 

independent over a range of time intervals. The authors in [10] investigates asymptotic stability for 

stochastic differential equations with Levy noise. Zhu in [11] studied the stability of stochastic delay 

differential equations with Levy noise using a stability technique. Li and Xu in [12] addressed the 

Levy process’s entire proof for exponential functions. 

 

In light of the above discussion, the asymptotic stability of GRNs is investigated in this study. 

The noise term is specified as Levy type noise in the proposed model, which includes both Poisson 

random measurements and Brownian motion. A new set of sufficient LMI conditions is proposed to 

ensure the asymptotic stability of the considered system. Then, to deal with the system’s 

disturbance, a 𝐻∞ performance is introduced. Finally, a numerical example is provided to 

demonstrate the applicability of the proposed model. 

 

 Notations: ℝ𝑛 represents 𝑛 dimensional Euclidean space, ℝ𝑛×𝑛 denotes set of all 𝑛 × 𝑛 

matrix. 𝑃 > 0, (𝑃 < 0) means positive definite (negative definite). Sym(𝑃) denoted as symmetry 

and the superscripts 𝑇 denotes transpose and (−1) represents inverse of the matrix., 𝐸 stands for 

expectation operator, ∗ shows that terms induced by symmetry.  

 

2 Problem description 

The following nonlinear genetic regulatory networks are considered in this work  

 𝑥̇(𝑡) = −𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜏(𝑡))) + L, (1) 

 𝑦̇(𝑡) = −𝐶𝑦(𝑡) + 𝐷𝑥(𝑡 − 𝜎(𝑡)), (2) 

 where 𝑥(𝑡) ∈ ℝ𝑛 denotes the concentrations of mRNA and 𝑦(𝑡) ∈ ℝ𝑛 denotes concentrations of 

proteins. Then 𝐴 =  𝑑𝑖𝑎𝑔 {𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐶 =  𝑑𝑖𝑎𝑔 {𝑐1, 𝑐2, … , 𝑐𝑛} represents the dilution rates 

of mRNA and proteins. The coupling matrices of the considered networks are defined by 𝐷 =

 𝑑𝑖𝑎𝑔 {𝑑1, 𝑑2, … , 𝑑𝑛} and 𝐵 = (𝑏𝑖𝑗) ∈ ℝ𝑛×𝑛. The nonlinear function 𝑓 which is a monotonic function 

in Hill form, describes the protein’s feedback regulation of transcription. Furthermore, L denotes the 

transcriptional degradation rates at their most basic level. We have dropped L by relocating the 

equilibrium point towards the origin of system (1). 

We discuss stochastic differential equations in the form of Levy noise in this study in the 

following way:  

 
𝑑𝑥(𝑡) = [−𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜎(𝑡))]𝑑𝑡 + [𝐻(𝑡, 𝑥(𝑡 − 𝜏(𝑡), 𝑦(𝑡)]𝑑𝐿(𝑡)
𝑑𝑦(𝑡) = [−𝐶𝑦(𝑡) + 𝐷𝑥(𝑡 − 𝜏(𝑡))]𝑑𝑡,

 (3) 

 to discuss the 𝐻∞ performance of the proposed model, the output of the system is defined as  

 𝒵𝑥(𝑡) = 𝑀𝑥(𝑡),        𝒵𝑦(𝑡) = 𝑁𝑦(𝑡), (4) 

 where the Levy process is represented by  

 𝑑𝐿(𝑡) = 𝔹(𝑡) + ∫|𝑦|<𝑑
𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣)ℕ̅(𝑑𝑢, 𝑑𝑣), 

 where 𝔹 is the Brown motion of the independent m dimension, as specified on the entire 

probability space (Ω, 𝐹, 𝑃). The Poisson random measure ℕ is defined in ℝ+ × (ℝ𝑑 − {0}) with the 
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compensator ℕ̅. Assume that ℕ̅(𝑑𝑢, 𝑑𝑣) = 𝑁(𝑑𝑢, 𝑑𝑣) − 𝜂(𝑑𝑣)𝑑𝑢 and ∫ℝ𝑛−0
(|𝑣|2 ∧ 1)𝜂(𝑑𝑣) < ∞ 

and the constant 𝑑 ∈ (0,∞], also ℕ is independent of 𝔹.  

 

The following assumptions are essential to attain our main results.   

    1.  The time-varying delays 𝜏(𝑡) and 𝜎(𝑡) satisfies 0 ≤ 𝜏(𝑡) ≤ 𝜏 and 0 ≤ 𝜎(𝑡) ≤ 𝜎 and  

               𝜏̇(𝑡) ≤ 𝑙1,  𝜎̇(𝑡) ≤ 𝑙2, where 𝜏, 𝜎, 𝑙1 and 𝑙2 are positive constants.  

    2.  The nonlinear intensity is assumed to satisfy the following condition 

 trace(𝐻𝑇(𝑡)𝐻(𝑡)) ≤ (𝑥𝑇(𝑡 − 𝜏(𝑡))𝒜1
𝑇𝒜𝑥(𝑡 − 𝜏(𝑡)) + 𝑦𝑇(𝑡)ℬ𝑇ℬ𝑦(𝑡)).  

    3.  The function 𝑓(. ) satisfy the condition 𝑓(𝑥)(𝑓(𝑥) − 𝑉𝑥) ≤ 0, where  

               𝑉 =  𝑑𝑖𝑎𝑔 {𝑉1, 𝑉2, … , 𝑉𝑛} > 0.  

    4.  The there exist constant 𝔞 > 0, for each 𝑥 ∈ ℝ𝑛, 𝑝 > 0, such that  

               ∫|𝑦|<𝑑
|𝐇((𝑥, 𝑦)|𝑝𝜂(𝑑𝑣) ≤ 𝔞|𝑥|𝑝.  

 

Lemma 1 [13]  For symmetric matrix 𝒫 ∈ ℝ𝑛×𝑛 and a scalar 𝜏 > 0 and a vector function  

𝛩(𝑠) ∈ ℝ𝑛 such that the integrations concerned are well defined  

 −∫
𝑡

𝑡−𝜏
Θ𝑇(𝑠)𝒫Θ(𝑠)𝑑𝑠 ≤ −

1

𝜏
(∫

𝑡

𝑡−𝜏
Θ𝑇(𝑠)𝑑𝑠)𝑃(∫

𝑡

𝑡−𝜏
Θ(𝑠)𝑑𝑠). 

   

Lemma 2 [14]  For any matrices 𝑋, 𝑌 ∈ ℝ𝑛, matrix 𝒬 > 0, the following inequality is  

established  

 2𝑋𝑇𝑌 ≤ 𝑋𝑇𝒬𝑋 + 𝑌𝑇𝒬−1𝑌. 

3 Main Results 

   

Theorem 3.1  For the given scalars 𝜏, 𝜎, 𝑙1, 𝑙2 𝔞, 𝑘 then system (3) is asymptotically stable if 

there exist a positive definite matrices 𝑃𝑖 > 0, 𝑆𝑖 > 0, 𝑄𝑗 > 0, 𝑅𝑗 > 0, 𝐺𝑇 = [𝐺11
𝑇   𝐺12

𝑇 , 𝐺13
𝑇 ,

0  0  0  0  0  0  0  ] and positive constants 𝜆1, 𝜆2, 𝜇1 , 𝜇2 which satisfies the following LMIs for all 𝑖 =

1,2, 𝑗 = 1,2,3:  

 𝑃1 ≤ 𝜆1𝐼,    𝑅3 ≤ 𝜆2𝐼,   (5) 

  

 

[
 
 
 
 
[Ω]10×10 √𝜏𝜑𝑇 √𝜏𝐺 𝐺

−𝑆2 0 0

∗ −𝑆2 0

∗ ∗ −𝑅3]
 
 
 
 

< 0, (6) 

 

where  

Ω1,1 = − 𝑠𝑦𝑚 (𝑃1𝐴 + 𝐺11) + 𝑄1 + 𝑄2 + 𝜏𝑅1,    Ω1,2 = 𝐺11 − 𝐺12
𝑇 ,    Ω1,3 = −𝐺13

𝑇 ,    Ω1,10 = 𝑃1𝐵 

Ω2,2 =  𝑠𝑦𝑚 (𝐺12) − 𝑄2,    Ω2,3 = 𝐺13
𝑇 ,    Ω3,3 = −𝑄1(1 − 𝑙1) + (𝜆1 + 𝜏𝜆2)𝒜1

𝑇𝒜,    Ω3,5 = 𝐷𝑇𝑃2
𝑇 , 

 Ω4,4 = −
1

𝜏
𝑅1 + 𝔞𝑘𝑅3,    Ω5,5 = − 𝑠𝑦𝑚 (𝑃2𝐶) + 𝑄3 + 𝑄4 + 𝜎𝑅2 + (𝜆1 + 𝜏𝜆2)ℬ

𝑇ℬ + 𝜇1𝑉
𝑇𝑉 + 𝜏𝑆1, 

Ω6,6 = −𝑄4,    Ω7,7 = −𝑄3(1 − 𝑙2) + 𝜇2𝑉
𝑇𝑉,    Ω8,8 = −

1

𝜎
𝑅2 −

1

𝜏
𝑆1,    Ω9,9 = 𝑄5 − 𝜇1,     

 Ω10,10 = −𝑄5(1 − 𝑙2) − 𝜇2,    𝜑 = [−𝐴  0  0  0  0  0  0  0  0  𝐵] 

 and the remaining elements are zero. Throughout the calculation 𝑉(𝑡, 𝑥(𝑡), 𝑦(𝑡)) and 𝐻(𝑡, 𝑥(𝑡 −

𝜏(𝑡), 𝑦(𝑡)) are abbreviated as 𝑉(⋅) , 𝐻(𝑡) respectively.  

   

Proof : To analyze the stability conditions, the Lyapunov-Krasovskii functional is constructed 
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as follows  

 𝑉1(⋅) = 𝑥𝑇(𝑡)𝑃1𝑥(𝑡) + 𝑦𝑇(𝑡)𝑃2𝑦(𝑡), 

 𝑉2(⋅) = ∫
𝑡

𝑡−𝜏(𝑡)
𝑥𝑇(𝑠)𝑄1𝑥(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−𝜏
𝑥𝑇(𝑠)𝑄2𝑥(𝑠)𝑑𝑠, 

 𝑉3(⋅) = ∫
𝑡

𝑡−𝜎(𝑡)
𝑦𝑇(𝑠)𝑄3𝑦(𝑠)𝑑𝑠 + ∫

𝑡

𝑡−𝜎
𝑦𝑇(𝑠)𝑄4𝑦(𝑠)𝑑𝑠 +

∫
𝑡

𝑡−𝜎(𝑡)
𝑓𝑇𝑦(𝑠)𝑄5𝑓𝑦(𝑠)𝑑𝑠, 

 𝑉4(⋅) = ∫
0

−𝜏 ∫
𝑡

𝑡+𝜃
𝑥𝑇(𝑠)𝑅1𝑥(𝑠)𝑑𝑠𝑑𝜃 + ∫

0

−𝜎 ∫
𝑡

𝑡+𝜃
𝑦𝑇(𝑠)𝑅2𝑦(𝑠)𝑑𝑠𝑑𝜃, 

 𝑉5(⋅) = ∫
0

−𝜏 ∫
𝑡

𝑡+𝜃
𝑦𝑇(𝑠)𝑆1𝑦(𝑠)𝑑𝑠𝑑𝜃 

 +∫
0

−𝜏 ∫
𝑡

𝑡+𝜃
[−𝐴𝑥(𝜃) + 𝐵𝑓(𝑦(𝜃 − 𝜏(𝜃)))]𝑇𝑆2[−𝐴𝑥(𝜃) + 𝐵𝑓(𝑦(𝜃 − 𝜏(𝜃)))]𝑑𝑠𝑑𝜃, 

 𝑉6(⋅) = ∫
0

−𝜏 ∫
𝑡

𝑡+𝜃
 𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑠)𝑅3𝐻(𝑠))𝑑𝑠𝑑𝜃. 

 By using Ito stochastic formula, we get it as  

L𝑉1(⋅) = 2𝑥𝑇(𝑡)𝑃1[−𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜎(𝑡)] +  𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑡)𝑃1𝐻(𝑡)) 

 +2𝑦𝑇(𝑡)𝑃2[−𝐶𝑦(𝑡) + 𝐷𝑥(𝑡 − 𝜏(𝑡)], (7) 

L𝑉2(⋅) = 𝑥𝑇(𝑡)(𝑄1 + 𝑄2)𝑥(𝑡) − 𝑥𝑇(𝑡 − 𝜏)𝑄2𝑥(𝑡 − 𝜏) − 𝑥𝑇(𝑡 − 𝜏(𝑡)𝑄1𝑥(𝑡 − 𝜏(𝑡))(1 − 𝑙1), (8) 

L𝑉3(⋅) = 𝑦𝑇(𝑡)(𝑄3 + 𝑄4)𝑦(𝑡) − 𝑦𝑇(𝑡 − 𝜎)𝑄4𝑦(𝑡 − 𝜎) − 𝑦𝑇(𝑡 − 𝜎(𝑡))𝑄3𝑦(𝑡 − 𝜎(𝑡))(1 − 𝑙2) 

 +𝑓𝑇𝑦(𝑡)𝑄5𝑓𝑦(𝑡) − 𝑓𝑇𝑦(𝑡 − 𝜎(𝑡))𝑄5𝑓𝑦(𝑡 − 𝜎(𝑡))(1 − 𝑙2), (9) 

L𝑉4(⋅) = 𝜏𝑥𝑇(𝑡)𝑅1𝑥(𝑡) + 𝜎𝑦𝑇(𝑡)𝑅2𝑦(𝑡) − ∫
𝑡

𝑡−𝜏
𝑥𝑇(𝑠)𝑅1𝑥(𝑠)𝑑𝑠 − ∫

𝑡

𝑡−𝜎
𝑦𝑇(𝑠)𝑅2𝑦(𝑠)𝑑𝑠, (10) 

 L𝑉5(⋅) = 𝜏𝑦𝑇(𝑡)𝑆1𝑦(𝑡) − ∫
𝑡

𝑡−𝜏
𝑦𝑇(𝑠)𝑆1𝑦(𝑠)𝑑𝑠 + 𝜏[−𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜏(𝑡))]𝑇𝑆2 

 × [−𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜏(𝑡))] − ∫
𝑡

𝑡−𝜎
[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠))]𝑇 

 × 𝑆2[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠))]𝑑𝑠, (11) 

 L𝑉6(⋅) = 𝜏 𝑡𝑟𝑎𝑐𝑒 𝐻𝑇(𝑡)𝑅3𝐻(𝑡) − ∫
𝑡

𝑡−𝜏
 𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑠)𝑅3𝐻(𝑠)𝑑𝑠. (12) 

 By using Jensen’s inequality for the integral terms appeared in above inequality  

 −∫
𝑡

𝑡−𝜏
𝑥𝑇(𝑠)𝑅1𝑥(𝑠)𝑑𝑠 ≤ −

1

𝜏
(∫

𝑡

𝑡−𝜏
𝑥(𝑠)𝑑𝑠)𝑇𝑅1(∫

𝑡

𝑡−𝜏
𝑥(𝑠)𝑑𝑠), 

 −∫
𝑡

𝑡−𝜎
𝑦𝑇(𝑠)𝑅2𝑦(𝑠)𝑑𝑠 ≤ −

1

𝜎
(∫

𝑡

𝑡−𝜎
𝑦(𝑠)𝑑𝑠)𝑇𝑅2(∫

𝑡

𝑡−𝜎
𝑦(𝑠)𝑑𝑠), 

 −∫
𝑡

𝑡−𝜏
𝑦𝑇(𝑠)𝑆1𝑦(𝑠)𝑑𝑠 ≤ −

1

𝜏
(∫

𝑡

𝑡−𝜏
𝑦(𝑠)𝑑𝑠)𝑇𝑆1(∫

𝑡

𝑡−𝜏
𝑦(𝑠)𝑑𝑠). 

 We assume the following conditions, that we do in many stochastic systems studies  

  𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑡)𝑃1𝐻(𝑡)) ≤ 𝜆1(𝑥
𝑇(𝑡 − 𝜏(𝑡))𝒜1

𝑇𝒜1𝑥(𝑡 − 𝜏(𝑡)) + 𝑦𝑇(𝑡)ℬ1
𝑇ℬ1𝑦(𝑡)), 

  𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑡)𝑅3𝐻(𝑡)) ≤ 𝜆2(𝑥
𝑇(𝑡 − 𝜏(𝑡))𝒜1

𝑇𝒜1𝑥(𝑡 − 𝜏(𝑡)) + 𝑦𝑇(𝑡)ℬ1
𝑇ℬ1𝑦(𝑡)). 

 

For any constants 𝜇1 > 0, 𝜇2 > 0 the function 𝑓(⋅) satisfies the following condition  

 −𝜇1[𝑓
𝑇𝑦(𝑡)𝑓𝑦(𝑡) − 𝑦𝑇(𝑡)𝑉𝑇𝑉𝑦(𝑡)] ≥ 0, (13) 

 −𝜇2[𝑓
𝑇𝑦(𝑡 − 𝜎(𝑡))𝑓𝑇𝑦(𝑡 − 𝜎(𝑡)) − 𝑦𝑇(𝑡 − 𝜎(𝑡))𝑉𝑇𝑉𝑦(𝑡 − 𝜎(𝑡))] ≥ 0. (14) 

 The following Newton-Leibnitz formula is adopted from [15]  

 −2𝛼𝑇(𝑡)𝐺[𝑥(𝑡) − 𝑥(𝑡 − 𝜏) − ∫
𝑡

𝑡−𝜏
[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠))]𝑑𝑠 −

∫
𝑡

𝑡−𝜏
𝐻(𝑠, 𝑥(𝑠 − 𝜏(𝑠), 𝑦(𝑠))𝑑𝐿(𝑠)] = 0. (15) 

  By using Lemma 2, we obtained as  

 2𝛼𝑇(𝑡)𝐺 ∫
𝑡

𝑡−𝜏
[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠))]𝑑𝑠 ≤ 𝜏𝛼𝑇(𝑡)𝐺𝑆2

−1𝐺𝑇𝛼(𝑡) 

 +∫
𝑡

𝑡−𝜏
[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠)))]𝑇𝑆2[−𝐴𝑥(𝑠) + 𝐵𝑓(𝑦(𝑠 − 𝜏(𝑠)))]𝑑𝑠, (16) 

 2𝛼𝑇(𝑡)𝐺 ∫
𝑡

𝑡−𝜏
𝐻𝑇(𝑠)𝑑𝐿(𝑠) ≤ 𝛼𝑇(𝑡)𝐺𝑅3

−1𝐺𝑇𝛼(𝑡) +

(∫
𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝐿(𝑠))𝑇𝑅3(∫

𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝐿(𝑠)). (17) 
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 where 𝛼(𝑡) = [𝑥𝑇(𝑡) 𝑥𝑇(𝑡 − 𝜏) 𝑥𝑇(𝑡 − 𝜏(𝑡)) ∫
𝑡

𝑡−𝜏
𝑥𝑇(𝑠)𝑑𝑠 𝑦𝑇(𝑡)𝑦𝑇(𝑡 − 𝜎)𝑦𝑇(𝑡 −

𝜎(𝑡)) ∫
𝑡

𝑡−𝜎
𝑦(𝑠)𝑑𝑠𝑓𝑇𝑦(𝑡)𝑓𝑇𝑦(𝑡 − 𝜎(𝑡))].  

Taking mathematical expectations for the stochastic terms appeared in (17)  

 𝐸 [∫
𝑡

𝑡−𝜏
𝐻𝑇(𝑠)𝑑L(𝑠) 𝑅3 ∫

𝑡

𝑡−𝜏
𝐻(𝑠)𝑑L(𝑠)] =         

𝐸[∫
𝑡

𝑡−𝜏
𝐻𝑇(𝑠)𝑑𝑤(𝑠)𝑅3 ∫

𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝑤(𝑠) 

 +2∫
𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝑤(𝑠)𝑅3 ∫

𝑡

𝑡−𝜏 ∫|𝑦|<𝑑
𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣)𝑁̅(𝑑𝑢, 𝑑𝑣) 

     + ∫
𝑡

𝑡−𝜏 ∫|𝑦|<𝑑
𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣)𝑁̅(𝑑𝑢, 𝑑𝑣) 

 × 𝑅3 ∫
𝑡

𝑡−𝜏 ∫|𝑦|<𝑑
𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣)𝑁̅(𝑑𝑢, 𝑑𝑣)]. (18) 

 From the assumption (A4), we can obtained as  

 𝐸[∫
𝑡

𝑡−𝜏 ∫|𝑦|<𝑑
𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣)𝑁̅(𝑑𝑢, 𝑑𝑣)]2𝑅3 ≤

𝔞𝐸[(∫
𝑡

𝑡−𝜏 ∫|𝑦|<𝑑
(𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣))2𝜂(𝑑𝑣)  𝑑𝑢)𝑅3] 

 ≤ 𝔞𝔼[( ∫
𝑡

𝑡−𝜏
(∫|𝑦|<𝑑

(𝐇(𝑥(𝑢−), 𝑦(𝑢−), 𝑣))2𝜂(𝑑𝑣))  𝑑𝑠)𝑅3] 

 ≤ 𝔞𝑘𝐸[(∫
𝑡

𝑡−𝜏
𝑥2(𝑠)𝑑𝑠)𝑅3]. 

 By using the Lemma 1  

 𝐸[∫
𝑡

𝑡−𝜏
𝐻𝑇(𝑠)𝑑𝑤(𝑠)  𝑅3 ∫

𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝑤(𝑠)] ≤ 𝐸[∫

𝑡

𝑡−𝜏
 𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑠)𝑅3𝐻(𝑠))𝑑𝑠]. 

 Finally, obtained as  

 𝐸[∫
𝑡

𝑡−𝜏
𝐻𝑇(𝑠)𝑑𝐿(𝑠)  𝑅3 ∫

𝑡

𝑡−𝜏
𝐻(𝑠)𝑑𝐿(𝑠)] ≤ 𝐸[∫

𝑡

𝑡−𝜏
 𝑡𝑟𝑎𝑐𝑒 (𝐻𝑇(𝑠)𝑅3𝐻(𝑠))𝑑𝑠] + 

 𝔞𝑘𝐸[(∫
𝑡

𝑡−𝜏
𝑥(𝑠)𝑑𝑠)𝑇𝑅3(∫

𝑡

𝑡−𝜏
𝑥(𝑠)𝑑𝑠)]. (19) 

 Now, combining the equation from (7) to (19), we have obtained as  

 𝐸L𝑉(⋅) ≤ 𝐸𝛼𝑇(𝑡)Ψ𝛼(𝑡) 

where Ψ = Ω + 𝜏𝜙𝑇𝑆2𝜙 + 𝜏𝐺𝑆2
−1𝐺𝑇 + 𝐺𝑅3

−1𝐺𝑇 and using Schur complement it is easy to attain 

LMIs (5) and  (6). Then Ψ < 0 holds, it follows that 𝐸𝑉(⋅) ≤ 0. Therefore, the considered system (3) 

is asymptotically stable.  

 

4 𝑯∞ Analysis 

 This section, we have focused on 𝐻∞ performance for perturbed version of the system (3).  

 

𝑑𝑥(𝑡) = [−𝐴𝑥(𝑡) + 𝐵𝑓(𝑦(𝑡 − 𝜎(𝑡)) + 𝑀𝒲1(𝑡)]𝑑𝑡 + [𝐻(𝑡, 𝑥(𝑡 − 𝜏(𝑡), 𝑦(𝑡)]𝑑𝐿(𝑡)
𝑑𝑦(𝑡) = [−𝐶𝑦(𝑡) + 𝐷𝑥(𝑡 − 𝜏(𝑡)) + 𝑁𝒲2(𝑡)]𝑑𝑡,

 (20) 

 where 𝒲1(𝑡), 𝒲2(𝑡) are the disturbance inputs in 𝐿2([0,∞),ℝ) and 𝑀, 𝑁 are known constant 

matrices. Further, the 𝐻∞ performance is introduced to analyze the disturbance attention level 𝛾 >

0  

 𝐽 = [∫
∞

0
𝔷𝑇(𝑡)𝔷(𝑡) − 𝛾2𝒲𝑇(𝑡)𝒲(𝑡)]𝑑𝑡], (21) 

 where 𝔷(𝑡) = [𝑥𝑇(𝑡)    𝑦𝑇(𝑡)]𝑇 ,𝒲(𝑡) = [𝒲1
𝑇(𝑡)    𝒲2

𝑇(𝑡)]𝑇. 

 

Definition 1  The system (3) is said to be asymptotically stable with given disturbance 

attenuation level 𝛾 > 0, if it is stochastically asymptotically stable under zero initial condition and 

satisfies ∥ 𝔷(𝑡) ∥2≤∥ 𝒲(𝑡) ∥2  for every non-zero 𝔷(𝑡) ∈ 𝐿2[0,∞). 

  

Theorem 3.2  For the given scalars 𝜏, 𝜎, 𝑙1, 𝑙2 𝔞, 𝑘 then system (3) is asymptotically stable 
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also satisfies the performance index (21) if there exist a matrices 𝑃𝑖 > 0, 𝑆𝑖 > 0, 𝑄𝑗 > 0, 𝑅𝑗 > 0, 

𝐺𝑇 = [𝐺11
𝑇   𝐺12

𝑇 , 𝐺13
𝑇 , 0  0  0  0  0  0  0  ] and positive constants 𝜆1, 𝜆2, 𝜇1 , 𝜇2 which satisfies the 

following LMIs for all 𝑖 = 1,2, 𝑗 = 1,2,3:  

 𝑃1 ≤ 𝜆1𝐼,    𝑅3 ≤ 𝜆2𝐼,   (22) 

  

 

[
 
 
 
 
 
 
[Ω̃]10×10 ℛ1 ℛ2 √𝜏𝜑𝑇 √𝜏𝐺 𝐺

−𝛾2𝐼 0 0 0 0

∗ −𝛾2𝐼 0 0 0

∗ ∗ −𝑆2 0 0

∗ ∗ ∗ −𝑆2 0

∗ ∗ ∗ ∗ −𝑅3]
 
 
 
 
 
 

< 0, (23) 

 where Ω̃1,1 = Ω11 + 𝑀𝑇𝑀,  Ω̂5,5 = Ω5,5 + 𝑁𝑇𝑁,  ℛ1 = [𝑃1    0𝑛,9𝑛]𝑇, ℛ2 = [0𝑛,4𝑛, 𝑃2, 0𝑛,5𝑛]𝑇 and 

the remaining elements are same as in [Ω]10×10 of Theorem 3.1.  

   

Proof : The proof is followed as in Theorem (3.1), from zero initial conditions, 𝑉(0) = 0 and 

𝑉(∞) ≥ 0, so  

 𝐽 = 𝐸[∫
∞

0
𝔷𝑇(𝑡)𝔷(𝑡) − 𝛾2𝒲𝑇(𝑡)𝒲(𝑡) + L𝑉(𝑡, 𝑥(𝑡), 𝑦(𝑡))]𝑑𝑡 − 𝐸[𝑉(𝑡, 𝑥(𝑡), 𝑦(𝑡))], 

 = 𝐸[∫
∞

0
[𝔷𝑇(𝑡)𝔷(𝑡) − 𝛾2𝒲𝑇(𝑡)𝒲(𝑡) + L𝑉(𝑡, 𝑥(𝑡), 𝑦(𝑡))]𝑑𝑡], 

 ≤ 𝐸[∫
∞

0
[𝛼1

𝑇(𝑡)Θ𝛼1(𝑡)]𝑑𝑡], 

 where Θ is defined in (23) and 𝛼1(𝑡) = [𝛼𝑇(𝑡)    𝒲𝑇(𝑡)]𝑇. Therefore, we can conclude that the 

performance index 𝐽 ≤ 0 whenever Θ < 0, it can be verified with 𝐸[∥ 𝔷 ∥2] ≤∥ 𝒲 ∥2. Hence the 

system (20) is stochastically stable with a disturbance attenuation level 𝛾 > 0. 

 

5 Numerical Example 

  A numerical example is provided in this section to demonstrate the efficiency of the derived 

results. The parameters of the considered GRNs and their outputs are as follows:  

 𝐵 = [
0 0 0.5
0.5 0 0
0 0.5 0

] , 𝑀 = [
0.16 0.8 0
0.2 0 0.45
0 0.05 0.9

] , 𝑁 = [
0.25 0.1 −0.28
0.2 0.1 −0.19
0.15 0 0.23

], 

 𝐴 =  𝑑𝑖𝑎𝑔 {1,1,1},   𝐶 =  𝑑𝑖𝑎𝑔 {3,3,3},  𝐷 =  𝑑𝑖𝑎𝑔 {0.1,0.1,0.1},   𝒜1 =  𝑑𝑖𝑎𝑔 {0.4,0.4,0.4}, and 

ℬ1 =  𝑑𝑖𝑎𝑔 {0.2,0.2,0.2}, 𝑉 =  𝑑𝑖𝑎𝑔 {0.65,0.65,0.65} and 𝑓(𝑥) = 𝑥2/(1 + 𝑥2). The constant values 

are taken as 𝔞 = 0.15, 𝑘 = 0.5, 𝛾 = 0.1, 𝜏 = 1.2, 𝜎 = 1.1, 𝑙1 = 0.2, 𝑙2 = 0.1.  

    
Figure  1: State trajectories of mRNA 
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Figure  2: State trajectories of protein 

 

Simulations are plotted in the following way based on the above parameters. Fig.1 shows the 

concentrations of mRNAs and protein concentrations are presented in Fig.2. We can deduce from 

these figures that the state mRNA contains Levy noise, implying that there will be some fluctuation 

before it converges to an equilibrium point. Since the protein state is free of noise, it achieves fast 

convergence.  

  

6 Conclusion 

 The stability of GRNs with time delays and Levy noise is examined in this paper. Then the 

results are extended to analyze the 𝐻∞ performance. Furthermore, the necessary conditions for 

obtaining stochastic stabilization are discussed, as well as a simulation example demonstrating that 

system (3) and (4) is globally asymptotically stable. In future investigations, the stability of GRNs with 

Levy noise needs to be studied further. 
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