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We decomposing the balanced complete bipartite graph Ky, ., into C,’s and Cy’s. In particular, we find
necessary and sufficient conditions for accomplishing this when n > 2, for n = 0(mod2). Asa consequence, we show that for
nonnegative integers p and g, with n > 2, there exists a decomposition of the balanced complete bipartite graph K, >,
into p copies of C,, and g copiesof C, ifandonlyif 2np + 4q = 4n?, except when p isoddand n iseven.
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1 Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the
standard graph-theoretic the readers are referred to [1]. A cycle of length m is called m-cycle and it is
denoted by C,,. Let K,,, I, respectively denote a complete graph and an independent set on m
vertices. K,,, denotes the complete bipartite graph with m and n vertices in the parts. A graph
whose vertex set is partitioned into sets Vj, ...,V such that the edge set is Ujzjepm Vi XV} is a
complete m-partite graph, denoted by K, . when |V;| =n; forall i. Foranyinteger 1> 0, AG
denotes the graph consisting of 1 edge-disjoint copies of G. The complement of the graph G is
denoted by G. Let (xox;..Xx_1X,) denote the cycle Cj with vertices xg,X;,...,Xx_, and edges
X0X1,X1X2, vy Xk—2Xp—1, X—1X0- The A -multiplication of G, denoted G(A), is the multigraph
obtained from a graph G by replacing each edge with A edges. For two graphs G and H, their
lexicographic product or wreath product G @ H has vertex set V(G) X V(H) with two vertices
(g1,h1) and (g, h;) adjacent whenever g,g9, € E(G) or g, =g, and hih, € E(H). The
complement of the graph G is denoted by G.
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Bya decomposition of a graph G, we mean a list of edge-disjoint subgraphs of ¢ whose union
is G (ignoring isolated vertices). For a graph G, if E(G) can be partitioned into Ej, ..., E; such that
the subgraph induced by E; is H;, forall i, 1 <i <k, then we say that H,, ..., H, decompose G
and we write G = H; @ ... @ Hy, since Hy,...,H; are edge-disjoint subgraphs of G. For 1 <i <k,
if H; = H, wesaythat G hasa H-decomposition. A cycle passing through all the vertices of G is called
hamilton cycle of G.An n-regular graph G issaidtohavea  Hamilton cycle decomposition if its edge
set can be partitioned into n/2 Hamilton cycles when n is even. If G has a decomposition into p
copies of H; and q copies of H,, then we say that G has a {pH,, qH,}-decomposition. If such a
decomposition exists for all values of p and g satisfying trivial necessary conditions, then we say that
G hasa {Hy, Hy}gp qy-decomposition or Gis  fully {H,, H,}-decomposable.

Study of {H,, H,}p q3-decomposition for graphs is not new. Chou et al. [2] proved that for a given
triple (p,q,r) of nonnegative integers, G decompose into p copies of C,, q copies of Cg, and r
copies of Cg suchthat 4p + 6q + 8r = |E(G)| inthe following two cases: (a) G = K, , with m and
n both even at least 4, except K, 4, (b) G is obtained from K, , with n odd by deleting a perfect
matching. Chou and Fu [3] proved that the existence of {C,, Cy¢}(p,q3-decomposition of Ky, 5, where
t/2<u,v<t when t even (resp.,, (t+1)/2<u,v<(3t—1)/2 when t odd) implies such
decomposition in Ky, 2, where m,n >t (resp.,, m,n = (3t + 1)/2). Jeevadoss and Muthusamy [4]
reduced the bounds in the sufficient conditions obtained by Chou and Fu [3] for the existence of
{C4, C3t}(p,qy-decomposition of Ky, 2, when t > 2.

In this paper, we study the existence of {Cy, C4p}p q)-decomposition of Kjy 5,. In fact, we

establish some necessary and sufficient conditions for the existence of {C4, C4r}(p,q;-decomposition of

KZn,Zn-

Let K, be the complete bipartite graph with bipartition (X,Y), where X = {x4,...,x,} and
Y ={y1, ., Jn}. For 0<i<n-—1, let F;(X,Y) denote the set {x;y;;;:j € [n]}, where subscripts
are taken modulo n. Clearly F;(X,Y) isa 1-factor of K,,,, called the 1-factor of distance i. Also,
Uty Fi(X,Y) = Kpn. In a complete bipartite graph with bipartition (X,Y) with [X| = |Y], an edge
x;yj is called an edge of distance j—i if i <j, or n—(i—j), if i >, from X to Y. (The same
edge is said to be of distance i —j if i=j or n—(i—j), if i <j, from Y to X.

Remark 1.1

i. For n €N, let K;,,, have partite sets X; UX3 and X, UX,, where X, ={x7,..,x;}. For
0<isn-1, let F;(X,,Xs) ={x/xjy; : j€[n]}, where arithmetic in subscripts is taken
modulo n. Note that the union of the sets F;(X,,X;) over all i and (r,s)€
{(1,2),(2,3),(3,4),(4,1)} decomposes Ky p-

ii. For k€ {0,..,n—1} and i€ {1,234}, the set F(X; Xis1) U Fry1(X;, X;11) forms a 2-
regular subgraph of K, ,, consisting a cycle of length 2n.

iii. For any positive integer n, the set Fy(Xy,X3) U Fy(X3, X3) U Fy(X3,X,) U Fi(Xy,X,) forms a
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Vi.

Vii.

viii.

Hamilton cycle of K3y, op.

F(Xi, X;) = Fu_ (X, X;), where 0 <k <n-—1.

For odd n, the set F,,_1(X1,X3) @ Fy(X5, X3) @ F_1(X3,X4) @ Fy(X4,X,) forms a Hamilton
cycle of Ko 2.

For even n, the set F,,_1(X1,X3) @ Fy(X,,X3) @ F,(X3,X,) D Fy(X4,X1) forms a Hamilton
cycle of Koy on.

The edges of F_x(X1,X3) @ Fi(X5,X3) D F_(X3,X4) B Fr.(Xy,X;) forms a C(,
decomposition of Kpj, ., where 0 <k <n-1.

The edges of Fj(Xy,X;) @ Fj+1(X1,X3), can be decomposed into Ps,s such that any two
consecutive vertices x}!,x1,;, 1 <r <n serve as end vertices in exactly one component in the
P3- decomposition. Similarly the edges of Fj, (X1, Xs) D Fr41(X1,X,4), can be decomposed into
P3,s such that any two consecutive vertices x},xl,;, 1 <7 < n, serve as end vertices in exactly
one component in the P;- decomposition, thus (x}xZxjx!,;) forms a four cycle. Thus
Fi(X1,X3) @ Fjp1(X1, X2) @ Fe (X1, X4) D Fiqq(X1,X4) can be decomposed into 4-cycles. Also
Fi(X3,X3) @ Fj11(X3,X3) @ Fi (X3,X4) D Fy1(X3,X4) can be decomposed into 4-cycles,
where 0 <j,k<n-1.

2 {C4, Cyp}gp qy-decomposition of Ky, 5y.
In this section we investigate the decompositions of K3, ,, — aH into C4, where aH denotes

the a edge-disjoint Hamilton cycles of K 5.

Theorem 2.1 Forodd n = 3, the graph K, ,, —H can be decomposed into 4-cycles.

Proof. Without loss of generality, let

V(Kan2n) = (X1 U X3,X; UXy),

n-1

E(Kzn2n — H) = U (Fie (X1, X2) @ Fi (X2, X3) @ Fie(X3,X4) @ Fie (X4, X1))\H
k=0

where H = F,_1(X1,X;) @ Fo(X3,X3) @ F,—1(X3,X4) D Fy(X4, Xy), is an Hamilton cycle of K, 5p,.

n-3

2
Konon —H =k@0 [Azk 26041 (X1, X2) D A'n— 21y n—(2k+2) X1, X1)| B

n-3

2
k@o [Bn—(2k+1),n—(2k+2)(XZ'XS) @ B’Zk,2k+1(X3'X4)]'

By Remark 1.1,

n-3

2
Konon —H =k€=90 [Aok 2k41 (X1, X2) D A'gper1 2k02(X1, Xo)| D

n-3

2
k@o [B2k+1,2k+2(X3:X2) @ B’2k,2k+1(X3:X4)]r

where

A2k,2k+1(X1JX2) = For (X1, X32) @ Fope1 (X1, X3)
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A'opr12042 (X1, Xa) = Fapy1 (X1, X4) D Fopg2 (X1, X4)
Bors1,2k42(X3,X2) = Fary1(X3,X2) @D Fory2(X3,X3)
B’k 241 (X3, Xs) = Foi (X3, X4) @ Fopq1 (X3, Xa)-
By Remark 1.1, Azgox+1(X1,X2) @ A'op412k+2(X1,X4) can be decomposed into 4-cycles, similarly
Byri12k+2(X3,X2) @D B’y 2141 (X3, X4) can be decomposed in 4-cycles, we obtain the proof.
Theorem 2.2 For odd n = 3, odd a,1 < a <n, the graph K3, ,, — aH can be decomposed into 4-
cycles.
Proof. Without loss of generality, let

V(Konan) = (X1 U X3, X, UX,)  whereX; = {x},x}, -, x5},

n-1 a—1
E(Konan — @) = |_J [FeCru, X2) @ Fe(Xo, X3) @ Fie(Xs, X) @ Fe XN | Hp,
k=0 p=0

where Hp, = Fryq_p (X1, X5) @ E, (X5, X3) @ Fu_p (X3, X)) @ F,(Xp,X;) , for 0<p<a-—1 are

edge disjoint Hamilton cycles of Ky, op,.
n-a—2

2
Konon —aH = k@o [Azk+2,20043 (X1, X2) B A'n— ks 1y m—2k+2) X0, X1)| B

n-a-2

2
kE_BO [Bn—2k+1)m—(2k+2) (X2, X3) @ B'aies1 20042 (X3, Xa)].

By Remark 1.1,

n—-a—2

2
Konon —aH = kG_aO [A2k+2,2k+3(X1:X2) ©® A,2k+1,2k+2(X1'X4)] D

n—-a-—2

2
ke_ao [32k+1,2k+2(X3vX2) @ B’2k+1,2k+2(X3'X4)]'

where
Azker2,2k+3(X1, X2) = Fop42(X1, X2) @ Fopi3(X1, X3)
A’2k+1,2k+2 (XlJX4-) = F2k+1(X1'X4-) @ F2k+2(X1'X4)
Bok+1,2k42(X3,X2) = Fap1(X3,X2) @ Fop42(X3,X2)
B'akr1,2k02(X3, Xa) = Fo1(X3,X4) © Fara2(X3,X4).

By Remark 1.1, Ayxi22k+3 (X1, X2) @ A'2k412k+2(X1,X4) can be decomposed into 4-cycles, similarly
Bii12k+2(X3,X2) @ B'op41.264+2(X3,X,) can be decomposed in 4-cycles, we obtain the proof.
Theorem 2.3 For odd n = 3, even a,1 < a <n, the graph K3, ,, — aH can be decomposed into 4-
cycles.
Proof. Without loss of generality,
Let V(Kzpn2n) = (X1 U X3,X; U Xy)whereX; = {xt, xb, o xh),
For a<n-—1,
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n-1 a—1
E(Konan — @) = |_J [FeCru, X2) @ Fe(Xo, X3) @ Fie(Xs, X) @ Fe XN Hp,
k=0 p=0
whereHp, = Fy_145(X1,X2) @ F1-p(X2,X3) @ Fmq1p(X3,Xy) @ Fo14p(Xy, Xp),for 0<p<a-—
1 are edge disjoint Hamilton cycles of K, op.

n—a-3

2
Konon —aH = k@o [An—ak+3)n-2iera) (X1, X2) DB A'2pr3 2004 (X1, X4)| B

n—-a—>5
2

A [Bn—(2k+3),n—(2k+4) (X3,X,) © B,2k+3,2k+4(X3’X4)] DYodz

4

For a=n-—1,
n—-1

E(Kanon — aH) = U [Fie (X1, X2) © Fie (X2, X3) @ Fie (X3, X4) @ Fie(Xa, X1)\
k=0
[Up=0p2a—2 Ho ® W]
where Hp = Fn—1+p(X1:X2) @ Fn—l—p(XZ'XB) D Fn—l—p(X3'X4) S Fn—1+p(X4'X1)r for 0< p(i
a —2) < a—1 are edge disjoint Hamilton cycles of Ky, »p,.
Konon —al =Z
where,
An_2k+3)n-(2k+4) X1, X2) = Fn_2k43) (X1, X2) D Fr_2k+4) (X1, X2)
A'gir32kr4 (X1, Xo) = Fapr3(X1, Xo) © Fopra(X1, Xa)
Bn_2k+3)n—2k+4) (X3, X2) = Fu_2k43) (X3, X2) D Fre2kr4) (X3, X2)
B'yk13,2044 (X3, Xa) = For43(X3,X4) © Fopra(X3,X4).
Y =Bon-1(X3,X2) @ Blo,l(X3JX4)
W = Fp_4(X1,X2) @ Fo(X2,X3) @ Fo(X3,Xs) @ Fr_a(X4, X1)
Z =Fp 5 (X1,X2) @ F(X2,X3) © F(X3,X4) @ Fr—2(X4, X1)
By Remark 1.1, Apn_(2k+3)n—(2k+4) (X1, X2) @D A’k +326+4(X1,X,) can be decomposed into 4-cycles,
similarly By _(2k+3)n—(2k+4) (X3, X2) D B'2k432k+4(X3,X4), ¥ and Z can be decomposed in 4-cycles,

W is an Hamilton cycle , we obtain the proof.

Theorem 2.4 Foreven n = 4, even a,1 < a < n, the graph K3, ,, — aH can be decomposed into 4-
cycles.
Proof. Without loss of generality, Let

V(Kznzn) = (X1 U X3, X, U X,), where X; = {x{, x5, -, x5},

n-1 a—1
E(KZn,Zn - (XH) = U [Fk(XliXZ) @ Fk(X2:X3) @ Fk(XS'X4-) @ Fk(X4rX1)]\ H )
k=0 p=0

where Hp, = Fpyq_p(X1,X3) @ E, (X2, X3) D Fi—p (X3, X4) @ F, (X4, Xq) , for 0<p<a-—1 are
edge disjoint Hamilton cycles of Kjj, 5y.
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n—-a—2

]

Konan —aH = [A2k+2,2k+3(X1'X2) Y A,2k+1,2k+2(X1rX4)] Y

1O

N

n—

k@o [Bak+1,2k42 (X3, X2) @ B 2pr1,2042(X3,X0)],

]

N

where
Agk+2,2k+3(X1, X2) = Fop42(X1, X2) @ Fag43 (X1, X2)
A ger1,2k02 (X1, Xa) = Fopp1 (X1, Xa) @ Fopq2 (X1, Xa)
Bok+1,2k+2(X3,X2) = Fop1(X3,X2) @ Fag42(X3,X2)
B'ak1,2k02(X3, Xa) = Fopr1(X3,X4) © Farq2(X3,Xy).

By Remark 1, Ajpi22k+3(X1,X2) @ A'2k+1,2k4+2(X1,X4) can be decomposed into 4-cycles,
similarly  Bpgi12k+2(X3,X2) @ B'2k+12k+2(X3,X4) can be decomposed in 4-cycles, we obtain the
proof.
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